Free algebras in varieties of BL-algebras generated by a BL_n -chain

Manuela Busaniche and Roberto Cignoli

Departamento de Matemática Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires - CONICET Ciudad Universitaria, 1428 Buenos Aires - Argentina.

e-mail addresses: manuelabusaniche@yahoo.com.ar, cignoli@mate.dm.uba.ar

Abstract

Free algebras with an arbitrary number of free generators in varieties of BL-algebras generated by one BL-chain which is an ordinal sum of a finite MV-chain \mathbf{L}_n and a generalized BL-chain \mathbf{B} are described in terms of weak boolean products of BL-algebras that are ordinal sums of subalgebras of \mathbf{L}_n and free algebras in the variety of basic hoops generated by \mathbf{B} . The boolean products are taken over the Stone spaces of the boolean subalgebras of idempotents of free algebras in the variety of MV-algebras generated by \mathbf{L}_n .

Keywords: BL-algebras, Residuated lattices, Hoops, Moisil algebras, Free algebras, Boolean products.

Introduction

Basic Fuzzy Logic (BL for short) was introduced by Hájek (see [21] and the references given there) to formalize fuzzy logics in which the conjunction is interpreted by a continuous t-norm on the real segment [0, 1] and the implication by its corresponding adjoint. He also introduced BL-algebras as the algebraic counterpart of these logics. BL-algebras form a variety (or equational class) of residuated lattices [21]. More precisely, they can be characterized as bounded basic hoops [7, 2]. Subvarieties of the variety of BL-algebras are in correspondence with axiomatic extensions of BL. Important examples of subvarieties of BL-algebras are MV-algebras (that correspond to Łukasiewicz many-valued logics, see [18]), linear Heyting algebras (that correspond to the superintuitionistic logic characterized by the axiom $(P \Rightarrow Q) \lor (Q \Rightarrow P)$, see [26] for a historical account about this logic), PL-algebras (that correspond to the logic determined by the t-norm given by the ordinary product on [0,1], see [14]), and also boolean algebras (that correspond to classical logic).

Since the propositions under BL equivalence form a free BL-algebra, descriptions of free algebras in terms of functions give concrete representations of

these propositions. Such descriptions are known for some subvarieties of BL-algebras. The best known example is the representation of classical propositions by boolean functions. Free MV-algebras have been described in terms of continuous piecewise linear functions by McNaughton [24] (see also [18]). Finitely generated free linear Heyting algebras were described by Horn [22], and a description of finitely generated free PL-algebras is given in [14]. Linear Heyting algebras and PL-algebras are examples of varieties of BL-algebras satisfying the boolean retraction property. Free algebras in these varieties were completely described in [16].

In [10] the first author described the finitely generated free algebras in the varieties of BL-algebras generated by a single BL-chain which is an ordinal sum of a finite MV-chain \mathbf{L}_n and a generalized BL-chain \mathbf{B} . We call these chains BL_n -chains. The aim of this paper is to extend the results of [10] considering the case of infinitely many free generators. The results of [10] were heavely based on the fact that the boolean subalgebras of finitely generated algebras in the varieties generated by BL_n -chains are finite. Therefore the methods of [10] can not be applied to the general case.

As a preliminary step we characterize the boolean algebra of idempotent elements of a free algebra in \mathcal{MV}_n , the variety of MV-algebras generated by the finite MV-chain \mathbf{L}_n . It is the free boolean algebra over a poset which is the cardinal sum of chains of length n-1. In the proof of this result a central role is played by the Moisil algebra reducts of algebras in \mathcal{MV}_n .

Free algebras in varieties of BL-algebras generated by a single BL_n-chain $\mathbf{L}_n \uplus \mathbf{B}$ are then described in terms of weak boolean products of BL-algebras that are ordinal sums of subalgebras of \mathbf{L}_n and free algebras in the variety of basic hoops generated by \mathbf{B} . The boolean products are taken over the Stone spaces of the boolean algebras of idempotent elements of free algebras in \mathcal{MV}_n . An important intermediate step is the characterization of the variety of generalized BL-algebras generated by \mathbf{B} (Corollary 3.5).

The paper is organized as follows: in the first section we recall, for further reference, some basic notions on BL-algebras and on the varieties \mathcal{MV}_n . We also recall some facts about the representation of free algebras in varieties of BL-algebras as weak boolean products. The only new result is given in Theorem 1.5. In Section 2, after giving the necessary background on Moisil algebra reducts of algebras in \mathcal{MV}_n , we characterize the boolean algebras of idempotent elements of free algebras in \mathcal{MV}_n . These results are used in Section 3 to give the mentioned description of free algebras in the varieties of BL-algebras generated by a BL_n-chain. Finally in Section 4 we give some examples and we compare our results with those of [16] and [10].

1 Preliminaries

1.1 BL-algebras: Basic Notions

A **hoop** [7] is an algebra $\mathbf{A} = (A, *, \rightarrow, \top)$ of type (2, 2, 0), such that $(A, *, \top)$ is a commutative monoid and for all $x, y, z \in A$:

1.
$$x \to x = \top$$
,

2.
$$x * (x \rightarrow y) = y * (y \rightarrow x)$$
,

3.
$$x \rightarrow (y \rightarrow z) = (x * y) \rightarrow z$$
.

A basic hoop [2] or a generalized BL-algebra [17], is a hoop that satisfies the equation:

$$(((x \to y) \to z) * ((y \to x) \to z)) \to z = \top. \tag{1}$$

It is shown in [2] that generalized BL-algebras can be characterized as algebras $\mathbf{A} = (A, \land, \lor, *, \to, \top)$ of type (2, 2, 2, 2, 0) such that:

- 1. $(A, *, \top)$, is an commutative monoid,
- 2. $\mathbf{L}(\mathbf{A}) := (A, \wedge, \vee, \top)$, is a lattice with greatest element \top ,
- 3. $x \to x = \top$,
- 4. $x \rightarrow (y \rightarrow z) = (x * y) \rightarrow z$,
- 5. $x \wedge y = x * (x \rightarrow y)$,
- 6. $(x \to y) \lor (y \to x) = \top$.

A **BL-algebra** or **bounded basic hoop** is a bounded generalized BL-algebra, that is, it is an algebra $\mathbf{A} = (A, \land, \lor, *, \rightarrow, \bot, \top)$ of type (2, 2, 2, 2, 0, 0) such that $(A, \land, \lor, *, \rightarrow, \top)$ is a generalized BL-algebra, and \bot is the lower bound of $\mathbf{L}(\mathbf{A})$. In this case, we define the unary operation \neg by the equation:

$$\neg x = x \to \bot$$
.

The BL-algebra **A** with only one element, that is $\bot = \top$, is called the **trivial BL-algebra**. The varieties of BL-algebras and of generalized BL-algebras will be denoted by \mathcal{BL} and \mathcal{GBL} , respectively.

In every generalized BL-algebra **A** we denote by \leq the (partial) order defined on A by the lattice $\mathbf{L}(\mathbf{A})$, i.e. for $a,b\in A,\ a\leq b$ iff $a=a\wedge b$ iff $b=a\vee b$. This order is called the **natural order** of **A**. When this natural order is total (i.e., for each $a,b\in A,\ a\leq b$ or $b\leq a$), we say that **A** is a **generalized BL-chain** (**BL-chain** in case **A** is a BL-algebra). The following theorem makes obvious the importance of BL-chains and can be easily derived from [21, Lemma 2.3.16].

Theorem 1.1 Each BL-algebra is a subdirect product of BL-chains.

In every BL-algebra **A** we define a binary operation:

$$x \oplus y = \neg(\neg x * \neg y).$$

For each positive integer k, the operations x^k and $k \cdot x$ are inductively defined as follows:

- $x^1 = x$ and $x^{k+1} = x^k * x$.
- $1 \cdot x = x$ and $(k+1) \cdot x = (k \cdot x) \oplus x$.

MV-algebras, the algebras of Łukasiewicz infinite-valued logic, form a subvariety of \mathcal{BL} , which is characterized by the equation:

$$\neg \neg x = x$$

(see [21]). The variety of MV-algebras is denoted by \mathcal{MV} . Totally ordered MV-algebras are called **MV-chains**. For each BL-algebra **A**, the set

$$MV(\mathbf{A}) := \{x \in A : \neg \neg x = x\}$$

is the universe of a subalgebra $\mathbf{MV}(\mathbf{A})$ of \mathbf{A} which is an MV-algebra (see [17]). A **PL-algebra** is a BL-algebra that satisfies the following two axioms:

1.
$$(\neg \neg z * ((x * z) \to (y * z))) \to (x \to y) = \top$$
,

$$2. x \land \neg x = \bot.$$

PL-algebras correspond to **product fuzzy logic**, see [14] and [21].

It follows from Theorem 1.1 that for each BL-algebra **A** the lattice $\mathbf{L}(\mathbf{A})$ is distributive. The complemented elements of $L(\mathbf{A})$ form a subalgebra $\mathbf{B}(\mathbf{A})$ of **A** which is a boolean algebra. Elements of $B(\mathbf{A})$ are called **boolean elements** of **A**.

1.2 Implicative filters

Definition 1.2 An implicative filter of a BL-algebra **A** is a subset $F \subseteq A$ satisfying the following conditions:

1.
$$\top \in F$$
,

2. If
$$x \in F$$
 and $x \to y \in F$, then $y \in F$.

An implicative filter is called **proper** provided that $F \neq A$. If W is a subset of a BL-algebra \mathbf{A} , the implicative filter generated by W will be denoted by $\langle W \rangle$. If U is a filter of the boolean subalgebra $\mathbf{B}(\mathbf{A})$, then the implicative filter $\langle U \rangle$ is called **Stone filter of A**. An implicative filter F of a BL-algebra \mathbf{A} is called **maximal** iff it is proper and no proper implicative filter of \mathbf{A} strictly contains F

Implicative filters characterize congruences in BL-algebras. Indeed, if F is an implicative filter of a BL-algebra \mathbf{A} it is well known (see [21, Lemma 2.3.14]), that the binary relation \equiv_F on A defined by:

$$x \equiv_F y$$
 iff $x \to y \in F$ and $y \to x \in F$

is a congruence of **A**. Moreover, $F = \{x \in A : x \equiv_F \top\}$. Conversely, if \equiv is a congruence relation on A, then $\{x \in A : x \equiv \top\}$ is an implicative filter, and $x \equiv y$ iff $x \to y \equiv \top$ and $y \to x \equiv \top$. Therefore, the correspondence $F \mapsto \equiv_F$ is a bijection from the set of implicative filters of **A** onto the set of congruences of **A**.

Lemma 1.3 (see [16]) Let A be a BL-algebra, and let F be a filter of B(A). Then

$$(\equiv_F) = \{(a,b) \in A \times A : a \land c = b \land c \text{ for some } c \in F\}$$

is a congruence relation on **A** that coincides with the congruence relation given by the implicative filter $\langle F \rangle$ generated by F.

1.3 MV_n -algebras

For $n \geq 2$, we define:

$$L_n = \{\frac{0}{n-1}, \frac{1}{n-1}, \frac{2}{n-1}, \dots, \frac{n-1}{n-1}\}.$$

The set L_n equipped with the operations $x * y = \max(0, x + y - 1)$, $x \to y = \min(1, 1 - x + y)$, and with $\bot = 0$ defines a finite MV-algebra which shall be denoted by \mathbf{L}_n . Clearly $B(\mathbf{L}_n) = \{0, 1\}$.

A BL-algebra **A** is said to be **simple** provided it is nontrivial and the only proper implicative filter of **A** is the singleton $\{\top\}$. In [18] it is proved that \mathbf{L}_n is a simple MV-algebra for each integer n.

We shall denote by \mathcal{MV}_n the subvariety of \mathcal{MV} generated by \mathbf{L}_n . The elements of \mathcal{MV}_n are called \mathbf{MV}_n -algebras. A finite MV-chain \mathbf{L}_m belongs to \mathcal{MV}_n iff m-1 is a divisor of n-1. Therefore it is not hard to corroborate that every \mathbf{MV}_n -algebra is a subdirect product of a family of algebras $(\mathbf{L}_{m_i}, i \in I)$ where $m_i - 1$ divides n-1 for each $i \in I$.

It can be deduced from [18, Corollary 8.2.4 and Theorem 8.5.1] that \mathcal{MV}_n is the proper subvariety of \mathcal{MV} characterized by the following equations:

- (α_n) $x^{(n-1)} = x^n$, and if $n \ge 4$, for every integer p = 2, ..., n-2 that does not divide n-1:
- (β_n) $(p \cdot x^{p-1})^n = n \cdot x^p$.

If **A** is an MV_n-algebra, it is not hard to verify that for each $x \in A \setminus \{\top\}$, $x^n = \bot$ and for each $y \in A \setminus \{\bot\}$, $n.y = \top$.

1.4 Ordinal sum and decomposition of BL-chains

Let $\mathbf{R} = (R, *_{\mathbf{R}}, \to_{\mathbf{R}}, \top)$ and $\mathbf{S} = (S, *_{\mathbf{S}}, \to_{\mathbf{S}}, \top)$ be two hoops such that $R \cap S = \{\top\}$. Following [7] we can define the **ordinal sum** $\mathbf{R} \uplus \mathbf{S}$ of these two hoops as the hoop given by $(R \cup S, *, \to, \top)$ where the operations $(*, \to)$ are defined as follows:

$$x * y = \begin{cases} x *_{\mathbf{R}} y & \text{if } x, y \in R, \\ x *_{\mathbf{S}} y & \text{if } x, y \in S, \\ x & \text{if } x \in R \setminus \{\top\} \text{ and } y \in S, \\ y & \text{if } y \in R \setminus \{\top\} \text{ and } x \in S. \end{cases}$$
$$x \to y = \begin{cases} \top & \text{if } x \in R \setminus \{\top\}, \ y \in S, \\ x \to_{\mathbf{R}} y & \text{if } x, y \in R, \\ x \to_{\mathbf{S}} y & \text{if } x, y \in S, \\ y & \text{if } y \in R \setminus \{\top\} \text{ and } x \in S. \end{cases}$$

If $R \cap S \neq \{\top\}$, \mathbf{R} and \mathbf{S} can be replaced by isomorphic copies whose intersection is $\{\top\}$, thus their ordinal sum can be defined. Observe that when \mathbf{R} is a generalized BL-chain and \mathbf{S} is a generalized BL-algebra, the hoop resulting from their ordinal sum satisfies equation (1). Thus $\mathbf{R} \uplus \mathbf{S}$ is a generalized BL-algebra. Moreover, if \mathbf{R} is a BL-chain, then $\mathbf{R} \uplus \mathbf{S}$ is a BL-algebra, where $\bot = \bot_{\mathbf{R}}$. In this case it is obvious that the chain $\mathbf{R} \uplus \mathbf{S}$ is subdirectly irreducible

if and only if **S** is subdirectly irreducible. Notice also that for any generalized BL-algebra **S**, $\mathbf{L_2} \uplus \mathbf{S}$ is the BL-algebra that arises from adjoining a bottom element to **S**.

Given a BL-algebra **A** we can consider the set

$$D(\mathbf{A}) := \{ x \in \mathbf{A} : \neg x = \bot \}.$$

It is shown in [17], that $\mathbf{D}(\mathbf{A}) = (D(\mathbf{A}), \wedge, \vee, *, \rightarrow, \top)$ is a generalized BL-algebra.

Theorem 1.4 (see [10]) For each BL-chain **A** we have that

$$\mathbf{A} \cong \mathbf{MV}(\mathbf{A}) \uplus \mathbf{D}(\mathbf{A}).$$

Theorem 1.5 Let **A** be a BL-algebra such that $MV(\mathbf{A}) \cong \mathbf{L}_n$ for some integer n. Then

$$\mathbf{A} \cong \mathbf{MV}(\mathbf{A}) \uplus \mathbf{D}(\mathbf{A}) \cong \mathbf{L}_n \uplus \mathbf{D}(\mathbf{A}).$$

Proof: From Theorem 1.1, we can think of each non trivial BL-algebra **A** as a subdirect product of a family $(\mathbf{A}_i, i \in I)$ of non trivial BL-chains, that is, there exists an embedding

$$e: \mathbf{A} \to \prod_{i \in I} \mathbf{A}_i,$$

such that $\pi_i(e(\mathbf{A})) = \mathbf{A}_i$ for each $i \in I$, where π_i denotes each projection. We shall identify \mathbf{A} with $e(\mathbf{A})$. Then each element of A is a tuple \mathbf{x} and coordinate i is $x_i \in A_i$. With this notation we have that for each $\mathbf{x} \in A$, $\pi_i(\mathbf{x}) = x_i$. We will proof the following items:

1. For each $i \in I$, $MV(\mathbf{A}_i)$ is isomorphic to \mathbf{L}_n .

Since for each $i \in I$, π_i is a homomorphism and $\pi_i(MV(\mathbf{A})) \subseteq A_i$, we have that $\pi_i(MV(\mathbf{A})) \subseteq MV(\mathbf{A}_i)$. Then $\pi_i(\mathbf{MV}(\mathbf{A}))$ is a subalgebra of $\mathbf{MV}(\mathbf{A}_i)$. On the other hand, given $i \in I$, let $x_i \in MV(\mathbf{A}_i)$. Then $\neg \neg x_i = x_i$ and there exists an element $\mathbf{x} \in A$ such that $\pi_i(\mathbf{x}) = x_i$. Taking $\mathbf{y} = \neg \neg \mathbf{x} \in MV(\mathbf{A})$ we have that $\pi_i(\mathbf{y}) = x_i$ and $x_i \in \pi_i(MV(\mathbf{A}))$. Hence $MV(\mathbf{A}_i) \subseteq \pi_i(MV(\mathbf{A}))$.

In conclusion $\mathbf{MV}(\mathbf{A}_i) = \pi_i(\mathbf{MV}(\mathbf{A})) = \pi_i(\mathbf{L}_n) = \mathbf{L}_n$, because \mathbf{L}_n is simple.

2. If $\mathbf{x} \in A$, then $\mathbf{x} \in MV(\mathbf{A}) \cup D(\mathbf{A})$.

Let $\mathbf{x} \in A$ and let $\mathbf{y} = n.(\neg \mathbf{x})$. If $x_i \in L_n \setminus \{\top\}$, then $\neg x_i \in L_n \setminus \{\bot\}$. From equation (α_n) we obtain that $y_i = n.(\neg x_i) = \top$. On the other hand if $\neg x_i = \bot$, then $y_i = n.(\neg x_i) = \bot$. Now let $\mathbf{z} = (\neg \neg \mathbf{x})^n$. If $x_i \in L_n \setminus \{\top\}$, then $z_i = \bot$, but if $\neg \neg x_i = \top$, then $z_i = \top$.

Suppose there exists $\mathbf{x} \in A$ such that $\mathbf{x} \notin MV(\mathbf{A})$ and $\mathbf{x} \notin D(\mathbf{A})$. It follows from Theorem 1.4 that for each $i \in I$, $\mathbf{A}_i = \mathbf{MV}(\mathbf{A}_i) \uplus \mathbf{D}(\mathbf{A}_i)$, then there exist $i, j \in I$, such that $x_i \in MV(\mathbf{A}_i) \setminus \{\top\} = L_n \setminus \{\top\}$ and $x_j \in D(\mathbf{A}_j) \setminus \{\top\}$.

Let $\mathbf{y} = n.(\neg \mathbf{x})$. Then $y_i = \top$, $y_j = \bot$ and $y_k \in \{\bot, \top\}$ for each $k \in I \setminus \{i, j\}$. Now let $\mathbf{z} = (\neg \neg \mathbf{x})^n$. We have that $z_j = \top$, $z_i = \bot$ and $z_k \in \{\bot, \top\}$ for each $k \in I \setminus \{i, j\}$. It follows that \mathbf{y} and \mathbf{z} are elements in the chain $MV(\mathbf{A}) = L_n$ which are not comparable, which is a contradiction.

- 3. If $\mathbf{x} \in MV(\mathbf{A}) \setminus \{\top\}$ and $\mathbf{y} \in D(\mathbf{A})$, then $\mathbf{x} < \mathbf{y}$.
 - The statement is clear if $x_i \in MV(\mathbf{A}_i) \setminus \{\top\}$ for every $i \in I$ or if $y_i = \top$ for each $i \in I$. Otherwise, suppose $x_i = \top$ for some $i \in I$. Since $\mathbf{x} \neq \top$ there must exists $j \in I$ such that $x_j \neq \top$. If $y_i = \top$ for each $i \in I$ such that $x_i = \top$, then $\mathbf{x} < \mathbf{y}$. If not, let $\mathbf{z} = \mathbf{x} \wedge \mathbf{y}$. Since operations are coordinatewise, $z_j \in MV(\mathbf{A}_j) \setminus \{\top\}$ and $z_i \in D(\mathbf{A}_i) \setminus \{\top\}$, for some $i \in I$. Hence $\mathbf{z} \notin MV(\mathbf{A})$ and $\mathbf{z} \notin D(\mathbf{A})$ contradicting the previous item.
- 4. If $\mathbf{x} \in MV(\mathbf{A}) \setminus \{\top\}$ and $\mathbf{y} \in D(\mathbf{A})$, then $\mathbf{y} \to \mathbf{x} = \mathbf{x}$ and $\mathbf{y} * \mathbf{x} = \mathbf{x}$. Since $\neg \mathbf{y} = \bot$ we have that

$$\mathbf{y} \to \mathbf{x} = \mathbf{y} \to \neg \neg \mathbf{x} = \mathbf{y} \to (\neg \mathbf{x} \to \bot) = \neg \mathbf{x} \to (\mathbf{y} \to \bot) =$$

= $\neg \mathbf{x} \to \bot = \neg \neg \mathbf{x} = \mathbf{x}$,

and

$$\mathbf{x} = \mathbf{y} \wedge \mathbf{x} = \mathbf{y} * (\mathbf{y} \rightarrow \mathbf{x}) = \mathbf{y} * \mathbf{x}.$$

From the previous items it follows that $\mathbf{A} \cong \mathbf{MV}(\mathbf{A}) \uplus \mathbf{D}(\mathbf{A}) = \mathbf{L}_n \uplus \mathbf{D}(\mathbf{A})$.

1.5 Free algebras in varieties of BL-algebras generated by a BL_n -chain.

Recall that an algebra \mathbf{A} in a variety \mathcal{K} is said to be **free over a set** Y if and only if for every algebra \mathbf{C} in \mathcal{K} and every function $f:Y\to\mathbf{C}$, f can be uniquely extended to a homomorphism of \mathbf{A} into \mathbf{C} . Given a variety \mathcal{K} of algebras, we denote by $\mathbf{Free}_{\mathcal{K}}(X)$ the free algebra in \mathcal{K} over X. As mentioned in the introduction, we define a \mathbf{BL}_n -chain as a BL-chain which is an ordinal sum of the MV-chain \mathbf{L}_n and a generalized BL-chain. Once we fixed the generalized BL-chain \mathbf{B} , we are going to study the free algebra $\mathbf{Free}_{\mathcal{V}}(X)$ where \mathcal{V} is the variety of BL-algebras generated by the \mathbf{BL}_n -chain

$$\mathbf{T}_n := \mathbf{L}_n \uplus \mathbf{B}.$$

Notice that $\mathbf{MV}(\mathbf{T}_n) \cong \mathbf{L}_n$ and if $x \notin MV(\mathbf{T}_n) \setminus \{\top\}$, then $x \in D(\mathbf{T}_n) = B$. Recall that a **weak boolean product** of a family $(A_y, y \in Y)$ of algebras over a boolean space Y is a subdirect product \mathbf{A} of the given family such that the following conditions hold:

- if $a, b \in A$, then $[a = b] = \{y \in Y : a_y = b_y\}$ is open,
- if $a, b \in A$ and Z is a clopen in X, then $a|_Z \cup b|_{X \setminus Z} \in A$.

Since the variety \mathcal{BL} is congruence distributive, it has the Boolean Factor Congruence property. Therefore each nontrivial BL-algebra can be represented as a weak boolean product of directly indecomposable BL-algebras (see [5] and [20]). The explicit representation of each BL-algebra as a weak boolean product of directly indecomposable algebras is given in [16] by the following lemma:

Lemma 1.6 Let \mathbf{A} be a BL-algebra and let $Sp \ \mathbf{B}(\mathbf{A})$ be the boolean space of ultrafilters of the boolean algebra $\mathbf{B}(\mathbf{A})$. The correspondence:

$$a \mapsto (a/\langle U \rangle)_{U \in Sp \ \mathbf{B}(\mathbf{A})}$$

gives an isomorphism of A onto the weak boolean product of the family

$$(\mathbf{A}/\langle U \rangle) : U \in Sp \ \mathbf{B}(\mathbf{A})$$

over the boolean space $Sp \ \mathbf{B}(\mathbf{A})$. This representation is called **the Pierce representation**. Any other representation of \mathbf{A} as a weak boolean product of a family of directly indecomposable algebras is equivalent to the Pierce representation.

Therefore, to describe $\mathbf{Free}_{\mathcal{V}}(X)$ we need to describe $\mathbf{B}(\mathbf{Free}_{\mathcal{V}}(X))$ and the quotients $\mathbf{Free}_{\mathcal{V}}(X)/\langle U \rangle$ for each $U \in Sp \ \mathbf{B}(\mathbf{Free}_{\mathcal{V}}(X))$.

In the next section we will obtain a characterization of the boolean algebra $\mathbf{B}(\mathbf{Free}_{\mathcal{V}}(X))$. Once this aim is achieved, we shall consider the quotients $\mathbf{Free}_{\mathcal{V}}(X)/\langle U \rangle$.

2 $\mathbf{B}(\mathbf{Free}_{\mathcal{V}}(X))$

The next two results can be found in [17].

Theorem 2.1 For each BL-algebra A, $B(A) \cong B(MV(A))$.

Theorem 2.2 For each variety K of BL-algebras and each set X one has that:

$$\mathbf{MV}(\mathbf{Free}_{\mathcal{K}}(X)) \cong \mathbf{Free}_{\mathcal{MV} \cap \mathcal{K}}(\neg \neg X).$$

Theorem 2.3 $V \cap MV$ is the variety MV_n .

Proof: Since $\mathbf{L}_n \cong \mathbf{MV}(\mathbf{T_n})$ is in $\mathcal{V} \cap \mathcal{MV}$, we have that $\mathcal{MV}_n \subseteq \mathcal{V} \cap \mathcal{MV}$. On the other hand, let \mathbf{A} be an MV-algebra in $\mathcal{V} \cap \mathcal{MV}$. Suppose \mathbf{A} is not in \mathcal{MV}_n . Then there exists an equation $e(x_1, \ldots, x_p) = \top$ that is satisfied by \mathbf{L}_n and is not satisfied by \mathbf{A} , that is, there exist elements a_1, \ldots, a_p in A such that $e(a_1, \ldots, a_p) \neq \top$. Since $(\neg \neg b_1, \ldots, \neg \neg b_p)$ is in $(L_n)^p$, for each tuple (b_1, \ldots, b_p) in $(T_n)^p$, the equation $e'(x_1, \ldots, x_p) = e(\neg \neg x_1, \ldots, \neg \neg x_p) = \top$ is satisfied in \mathcal{V} . Since $\mathbf{A} \in \mathcal{V} \cap \mathcal{MV}$, it follows that $\mathbf{T} = e'(a_1, \ldots, a_p) = e(\neg \neg a_1, \ldots, \neg \neg a_p) = e(a_1, \ldots, a_p) \neq \top$, a contradiction. Hence $\mathcal{MV}_n = \mathcal{V} \cap \mathcal{MV}$.

From these results we obtain:

Theorem 2.4

$$\mathbf{B}(\mathbf{Free}_{\mathcal{V}}(X)) \cong \mathbf{B}(\mathbf{Free}_{\mathcal{MV}_n}(\neg \neg X)).$$

2.1 n-valued Moisil algebras

Boolean elements of $\mathbf{Free}_{\mathcal{MV}_n}(\neg \neg X)$ depend on some operators that can be defined on each \mathbf{MV}_n -algebra. Such operators provide each \mathbf{MV}_n -algebra with an n-valued Moisil algebra structure, in the sense of the following definition.

Definition 2.5 For each integer $n \geq 2$, an **n-valued Moisil algebra** ([8] and [11]) or **n-valued Łukasiewicz algebra** ([4], [12] and [13]) is an algebra $\mathbf{A} = (A, \wedge, \vee, \neg, \sigma_1^n, \dots, \sigma_{n-1}^n, 0, 1)$ of type $(2, 2, 1, \dots, 1, 0, 0)$ such that $(A, \wedge, \vee, 0, 1)$ is a distributive lattice with unit 1 and zero 0, and $\neg, \sigma_1^n, \dots, \sigma_{n-1}^n$ are unary operators defined on A that satisfy the following conditions:

- 1. $\neg \neg x = x$,
- 2. $\neg(x \lor y) = \neg x \land \neg y$,
- 3. $\sigma_i^n(x \vee y) = \sigma_i^n x \vee \sigma_i^n y$,
- 4. $\sigma_i^n x \vee \neg \sigma_i^n x = 1$,
- 5. $\sigma_i^n \sigma_i^n x = \sigma_i^n x$, for $i, j = 1, 2, \dots n 1$,
- 6. $\sigma_i^n(\neg x) = \neg(\sigma_{n-i}^n x),$
- 7. $\sigma_i^n x \vee \sigma_{i+1}^n x = \sigma_{i+1}^n x$, for i = 1, 2, ..., n-2,
- 8. $x \vee \sigma_{n-1}^n x = \sigma_{n-1}^n x$,
- 9. $(x \wedge \neg \sigma_i^n x \wedge \sigma_{i+1}^n y) \vee y = y$, for $i = 1, 2, \dots, n-2$.

Properties and examples of n-valued Moisil algebras can be found in [4] and in [8]. The variety of n-valued Moisil algebras will be denoted \mathcal{M}_n . An important property of n-valued Moisil algebras is the following:

We also have that:

Theorem 2.6 (see [11]) Let **A** be in \mathcal{M}_n . Then $x \in B(\mathbf{A})$ if and only if $\sigma_{n-1}^n(x) = x$. Furthermore,

$$\sigma_{n-1}^n(x) = \min\{b \in B(\mathbf{A}) : x \le b\} \text{ and } \sigma_1^n(x) = \max\{a \in B(\mathbf{A}) : a \le x\}.$$

Definition 2.7 For each integer $n \geq 2$, **Post algebra of order** n is a system

$$\mathbf{A} = (A, \land, \lor, \neg, \sigma_1^n, \dots, \sigma_{n-1}^n, e_1, \dots, e_{n-1}, 0, 1)$$

such that $(A, \land, \lor, \neg, \sigma_1^n, \ldots, \sigma_{n-1}^n, 0, 1)$ is an n-valued Moisil algebra and e_1, \ldots, e_{n-1} are constants that satisfy the following equations:

$$\sigma_i^n(e_j) = \begin{cases} 0 & \text{if } i+j < n; \\ 1 & \text{if } i+j \ge n. \end{cases}$$

For every $n \geq 2$ we can define one-variable terms $\sigma_1^n(x), \ldots, \sigma_{n-1}^n(x)$ in the language $(\neg, \rightarrow, \top)$ such that evaluated on the algebras \mathbf{L}_n give:

$$\sigma_i^n(\frac{j}{(n-1)}) = \begin{cases} 1 & \text{if } i+j \ge n, \\ 0 & \text{if } i+j < n, \end{cases}$$

for i = 1, ..., n - 1 (see [13] or [25]). It is easy to check that

$$\mathbf{M}(\mathbf{L}_n) = (L_n, \wedge, \vee, \neg, \sigma_1^n, \dots, \sigma_{n-1}^n, 0, 1)$$

is a n-valued Moisil algebra. Since these algebras are defined by equations and \mathbf{L}_n generates the variety \mathcal{MV}_n , we have that each $\mathbf{A} \in \mathcal{MV}_n$ admits a structure of an n-valued Moisil algebra, denoted by $\mathbf{M}(\mathbf{A})$. The chain $\mathbf{M}(\mathbf{L}_n)$ plays a very important role in the structure of n-valued Moisil algebras, since each n-valued Moisil algebra is a subdirect product of subalgebras of $\mathbf{M}(\mathbf{L}_n)$ (see [4] or [12]). If we add to the structure $\mathbf{M}(\mathbf{L}_n)$ the constants

$$e_i = \frac{i}{n-1},$$

for i = 1, ..., n-1, then $\mathbf{PT}(\mathbf{L}_n) = (L_n, \wedge, \vee, \neg, \sigma_1^n, ..., \sigma_{n-1}^n, e_1, ..., e_{n-1}, 0, 1)$ is a Post algebra.

Not every n-valued Moisil algebra has a structure of MV_n -algebra (see [23]). For example, a subalgebra of $\mathbf{M}(\mathbf{L}_n)$ may not be a subalgebra of \mathbf{L}_n as MV_n -algebra. That is the case of the set

$$C = \{\frac{0}{4}, \frac{1}{4}, \frac{3}{4}, \frac{4}{4}\}$$

which is the universe of a subalgebra of $\mathbf{M}(\mathbf{L_5})$, but not the universe of a subalgebra of $\mathbf{L_5}$. On the other hand, every Post algebra has a structure of \mathbf{MV}_n -algebra (see [25, Theorem 10]).

The next example will play an important role in what follows:

Example 2.8 Let $\mathbf{C} = (C, \wedge, \vee, \neg, 0, 1)$ be a boolean algebra. We define

$$C^{[n]} := \{ \mathbf{z} = (z_1, \dots, z_{n-1}) \in C^{n-1} : z_1 \le z_2 \le \dots \le z_{n-1} \}$$

For each $\mathbf{z} = (z_1, \dots, z_{n-1}) \in C^{[n]}$ we define:

$$\neg_n \mathbf{z} = (\neg z_{n-1}, \dots \neg z_1),$$

$$\mathbf{0} = (0, \dots, 0),$$

$$\mathbf{1} = (1, \dots, 1),$$

$$\sigma_i^n(\mathbf{z}) = (z_i, z_i, \dots, z_i) \text{ for } i = 1, \dots, n-1.$$

With \wedge and \vee defined coordinatewise, $\mathbf{C}^{[n]} = (C^{[n]}, \wedge, \vee, \neg_n, \sigma_1^n, \dots, \sigma_{n-1}^n, \mathbf{0}, \mathbf{1})$ is an n-valued Moisil algebra (see [8, Chapter 3, Example 1.10]). If we define $\mathbf{e_j} = (e_{j,1}, \dots, e_{j,n-1})$ by

$$e_{j,i} = \begin{cases} 0 & \text{if } i < j, \\ 1 & \text{if } i > j, \end{cases}$$

then $\mathbf{C}^{[n]} = (C^{[n]}, \wedge, \vee, \neg_n, \sigma_1^n, \dots, \sigma_{n-1}^n, \mathbf{e_1}, \dots, \mathbf{e_{n-1}}, \mathbf{0}, \mathbf{1})$ is a Post algebra. Consequently, $\mathbf{C}^{[n]}$ has a structure of MV_n -algebra.

It is easy to see that for each MV_n -algebra **A**,

$$\mathbf{B}(\mathbf{A}) = \mathbf{B}(\mathbf{M}(\mathbf{A})).$$

We need to show that the boolean elements of the MV_n -algebra generated by a set G coincide with the boolean elements of the n-valued Moisil algebra generated by the same set. In order to prove this result it is convenient to consider the following operators on each n-valued Moisil algebra \mathbf{A} : for each $i=0,\ldots,n-1$

$$J_i(x) = \sigma_{n-i}^n(x) \wedge \neg \sigma_{n-i-1}^n(x),$$

where $\sigma_0^n(x) = 0$ and $\sigma_n^n(x) = 1$. Notice that in $\mathbf{M}(\mathbf{L}_n)$ we have:

$$J_i(\frac{j}{(n-1)}) = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

Lemma 2.9 Let **A** be an MV_n -algebra, and let $G \subset A$. If $\langle G \rangle_{\mathcal{MV}_n}$ is the subalgebra of **A** generated by the set G and $\langle G \rangle_{\mathcal{M}_n}$ is the subalgebra of $\mathbf{M}(\mathbf{A})$ generated by G, then

$$\mathbf{B}(\langle G \rangle_{\mathcal{MV}_n}) = \mathbf{B}(\langle G \rangle_{\mathcal{M}_n}).$$

Proof: Since $\langle G \rangle_{\mathcal{M}_n}$ is always a subalgebra of $\mathbf{M}(\langle G \rangle_{\mathcal{MV}_n})$, we have that $\mathbf{B}(\langle G \rangle_{\mathcal{MN}_n})$ is a subalgebra of $\mathbf{B}(\langle G \rangle_{\mathcal{MV}_n})$.

We will see that $B(\langle G \rangle_{\mathcal{MV}_n}) \subseteq B(\langle G \rangle_{\mathcal{M}_n})$. The case $G = \emptyset$ is clear. Suppose that G is a finite set of cardinality $p \geq 1$. Since MV_n -algebras are locally finite (see [9, Chapter II, Theorem 10.16]), we obtain that $\langle G \rangle_{\mathcal{MV}_n}$ is a finite MV_n -algebra. Since finite MV_n -algebras are direct product of simple algebras, there exists a finite $k \geq 1$ such that

$$< G >_{\mathcal{MV}_n} = \prod_{i=1}^k \mathbf{L}_{m_i},$$

where each m_i-1 divides n-1, for each $i=1,\ldots,k$. If k=1, then $< G>_{\mathcal{M}_n}$ and $< G>_{\mathcal{MV}_n}$ are finite chains whose only boolean elements are their extremes. Otherwise, we can think of the elements of $< G>_{\mathcal{MV}_n}$ as k-tuples, i.e., if $\mathbf{x} \in < G>_{\mathcal{MV}_n}$, then $\mathbf{x} = (x_1,\ldots,x_k)$. We shall denote by $\mathbf{1}^j$ the k-tuple given by

$$(\mathbf{1}^j)_i = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

It is clear that for each $j=1,\ldots,k, \ \mathbf{1}^j$ is in $< G>_{\mathcal{MV}_n}$. From this it follows that for every pair $i\neq j, i,j\in\{1,\ldots,k\}$, there exists an element $\mathbf{x}\in G$ such that $x_j\neq x_i$. Indeed, suppose on the contrary that there exist $i,j\leq k$ such that $x_i=x_j$, for every $\mathbf{x}\in G$. Then for every $\mathbf{z}\in < G>_{\mathcal{MV}_n}$ we would have $z_j=z_i$ contradicting the fact that $\mathbf{1}^i$ is in $< G>_{\mathcal{MV}_n}$.

To see that every boolean element in $\langle G \rangle_{\mathcal{MV}_n}$ is also in $\langle G \rangle_{\mathcal{M}_n}$ it is enough to prove that $\mathbf{1}^j$ is in $\langle G \rangle_{\mathcal{M}_n}$ for every $j = 1, \ldots, k$. For a fixed j, for each $i \neq j, i = 1, \ldots k$, we choose $\mathbf{x}^i \in G$ such that $x_j^i \neq x_i^i$. Let j_i be the numerator of $x_j^i \in L_n$. It is not hard to verify that

$$\mathbf{1}^j = \bigwedge_{i=1, i \neq j}^k J_{j_i}(\mathbf{x}^i).$$

Therefore $\mathbf{1}^j \in \langle G \rangle_{\mathcal{M}_n}$ and $B(\langle G \rangle_{\mathcal{MV}_n}) \subseteq B(\langle G \rangle_{\mathcal{M}_n})$.

If G is not finite, let \mathbf{y} be a boolean element in $\langle G \rangle_{\mathcal{MV}_n}$. Hence, there exists a finite subset $G_{\mathbf{y}}$ of G such that \mathbf{y} belongs to the subalgebra of $\langle G \rangle_{\mathcal{MV}_n}$ generated by $G_{\mathbf{y}}$. Therefore, since \mathbf{y} is boolean, \mathbf{y} belongs to the subalgebra of $\langle G \rangle_{\mathcal{M}_n}$ generated by $G_{\mathbf{y}}$, and we conclude that

$$B(\langle G \rangle_{\mathcal{MV}_n}) \subseteq B(\langle G \rangle_{\mathcal{M}_n})$$

for all sets G.

Given an algebra **A** in a variety \mathcal{K} , a subalgebra **S** of **A**, and an element $x \in A$, we shall denote by $\langle \mathbf{S}, x \rangle_{\mathcal{K}}$ the subalgebra of **A** generated by the set $S \cup \{x\}$ in \mathcal{K} .

Lemma 2.10 Let \mathbb{C} be in \mathcal{M}_n and $x \in \mathbb{C}$. Let \mathbb{S} be a subalgebra of \mathbb{C} such that $\sigma_i^n(x)$ belongs to $B(\mathbb{S})$ for each i = 1, ..., n-1. Then

$$\mathbf{B}(\langle \mathbf{S}, x \rangle_{\mathcal{M}_n}) = \mathbf{B}(\mathbf{S}).$$

Proof: Clearly $\mathbf{B}(\mathbf{S})$ is a subalgebra of $\mathbf{B}(<\mathbf{S},x>_{\mathcal{M}_n})$, then it is left to check that $B(<\mathbf{S},x>_{\mathcal{M}_n})\subseteq B(\mathbf{S})$. To achieve such aim, we shall study the form of the elements in $<\mathbf{S},x>_{\mathcal{M}_n}$. We define for each $s\in S$

- $\alpha(s) = s \wedge x$,
- $\beta(s) = s \land \neg x$,
- $\gamma_i(s) = s \wedge \sigma_i^n(x)$, for $i = 1, \dots n 1$,
- $\delta_i(s) = s \wedge \neg \sigma_i^n(x)$, for $i = 1, \dots n-1$.

Notice that for all $s \in S$ we have that $\gamma_i(s)$ and $\delta_i(s)$ are in S for $i = 1, \ldots, n-1$.

$$M := \{ y = \bigvee_{i=1}^{k_y} \bigwedge_{i=1}^{p_j} f_i(s_i) : f_i \in \{ \alpha, \beta, \gamma_1, \delta_1, \dots, \gamma_{n-1}, \delta_{n-1} \} \text{ and } s_i \in S \}.$$

We shall see that $\langle \mathbf{S}, x \rangle_{\mathcal{M}_n} = \mathbf{M} = (M, \wedge, \vee, \neg, \sigma_1^n, \dots, \sigma_{n-1}^n, 0, 1)$. Indeed, for all $s \in S$, $s = \gamma_1(s) \vee \delta_1(s)$, then $S \subseteq M$. Besides, $x \in M$ because $x = \alpha(1)$. Lastly, it is easy to see that M is closed under the operations of n-valued Moisil algebra, thus $\langle \mathbf{S}, x \rangle_{\mathcal{M}_n}$ is a subalgebra of \mathbf{M} . From the definition of M, it is obvious that $M \subseteq \langle \mathbf{S}, x \rangle_{\mathcal{M}_n}$, and the equality follows.

Now let $z \in B(\langle S, x \rangle_{\mathcal{M}_n})$. By Theorem 2.6, $\sigma_{n-1}^n(z) = z$ and $z = \bigvee_{j=1}^{k_z} \bigwedge_{i=1}^{p_j} f_i(s_i)$ with $f_i \in \{\alpha, \beta, \gamma_1, \delta_1, \dots, \gamma_{n-1}, \delta_{n-1}\}$ and $s_i \in S$. Then we have:

$$z = \sigma_{n-1}^{n}(z) = \sigma_{n-1}^{n}(\bigvee_{j=1}^{k_{z}} \bigwedge_{i=1}^{p_{j}} f_{i}(s_{i})) = \bigvee_{j=1}^{k_{z}} \bigwedge_{i=1}^{p_{j}} \sigma_{n-1}^{n}(f_{i}(s_{i})),$$

is in $B(\mathbf{S})$ because $\sigma_{n-1}^n(f_i(s_i)) = \gamma_k(\sigma_{n-1}^n(s_i))$ or $\sigma_{n-1}^n(f_i(s_i)) = \delta_k(\sigma_{n-1}^n(s_i))$, for some $k = 1, \ldots, n-1$.

Theorem 2.11 Let \mathbf{C} be an MV_n -algebra and $x \in \mathbf{C}$. Let \mathbf{S} be a subalgebra of \mathbf{C} such that $\sigma_i^n(x)$ belongs to $B(\mathbf{S})$ for each $i = 1, \ldots, n-1$. Then

$$\mathbf{B}(<\mathbf{S}, x>_{\mathcal{MV}_n}) = \mathbf{B}(\mathbf{S}).$$

Proof: By Lemmas 2.9 and 2.10 we obtain:

$$\mathbf{B}(\langle \mathbf{S}, x \rangle_{\mathcal{M}\mathcal{V}_n}) = \mathbf{B}(\langle \mathbf{S}, x \rangle_{\mathcal{M}_n}) = \mathbf{B}(\mathbf{S}).$$

2.2 Boolean elements in $\text{Free}_{\mathcal{MV}_n}(Z)$

Recall that a boolean algebra **B** is said to be **free over a poset** Y if for each boolean algebra **C** and for each non-decreasing function $f: Y \to \mathbf{C}$, f can be uniquely extended to a homomorphism from **B** into **C**.

Theorem 2.12 B(Free_{\mathcal{MV}_n}(Z)) is the free boolean algebra over the poset $Z' := \{\sigma_i^n(z) : z \in Z, i = 1, ..., n-1\}.$

Proof: Let **S** be the subalgebra of $\mathbf{B}(\mathbf{Free}_{\mathcal{MV}_n}(Z))$ generated by Z'. Let **C** be a boolean algebra and let $f: Z' \to \mathbf{C}$ be a non-decreasing function. The monotonicity of f implies that the prescription

$$f'(z) = (f(\sigma_1^n(z)), \dots, f(\sigma_{n-1}^n(z)))$$

defines a function $f': Z \to \mathbf{C}^{[n]}$. Since $\mathbf{C}^{[n]} \in \mathcal{MV}_n$, there is a unique homomorphism $h': \mathbf{Free}_{\mathcal{MV}_n}(Z) \to \mathbf{C}^{[n]}$ such that h'(z) = f'(z) for every $z \in Z$. Let $\pi: \mathbf{C}^{[n]} \to \mathbf{C}$ be the projection over the first coordinate. The composition $\pi \circ h'$ restricted to \mathbf{S} is a homomorphism $h: \mathbf{S} \to \mathbf{C}$, and for $y = \sigma_j^n(z) \in Z'$ we have:

$$h(y) = \pi(h'(\sigma_i^n(z))) = \pi(\sigma_i^n(h'(z))) = \pi(\sigma_i^n(f'(z))) =$$

$$\pi(\sigma_i^n(f(\sigma_1^n(z)), \dots, f(\sigma_{n-1}^n(z)))) = \pi(f(\sigma_i^n(z)), \dots, f(\sigma_i^n(z))) = f(\sigma_i^n(z)) = f(y).$$

Hence **S** is the free boolean algebra over the poset Z'. But since $\sigma_j^n(z)$ is in **S** for all $z \in Z$ and $j = 1, \dots n-1$, Theorem 2.11 asserts that

$$\mathbf{S} = \mathbf{B}(\mathbf{S}) = \mathbf{B}(\langle \mathbf{S}, z \rangle_{\mathcal{MV}_n})$$

for every $z \in Z$. From the fact that **S** is a subalgebra of $\mathbf{B}(\mathbf{Free}_{\mathcal{MV}_n}(Z))$ we obtain:

$$\mathbf{S} = \mathbf{B}(\langle \mathbf{S}, Z \rangle_{\mathcal{MV}_n}) = \mathbf{B}(\mathbf{Free}_{\mathcal{MV}_n}(Z))$$

that is, $\mathbf{B}(\mathbf{Free}_{\mathcal{MV}_n}(Z))$ is the free boolean algebra generated by the poset Z'.

From Theorem 2.4 we obtain:

Corollary 2.13 B(Free_{\mathcal{V}}(X)) is the free boolean algebra generated by the poset $Y := \{\sigma_i^n(\neg \neg x) : x \in X, i = 1, \dots, n-1\}.$

Remark 2.14 Notice that if n = 2, i.e, the variety considered \mathcal{V} is generated by a BL₂-chain, then $\sigma_1^2(x) = x$ for each $x \in X$. Therefore, in this case, $Y = \{\neg \neg x : x \in X\}$, and the cardinality of Y equals the cardinality of X. It follows that $\mathbf{B}(\mathbf{Free}_{\mathcal{V}}(X))$ is the free boolean algebra over the set Y.

3 Free $_{\mathcal{V}}(X)/\langle U \rangle$

Following the program established at the end of section 2, our next aim is to describe $\mathbf{Free}_{\mathcal{V}}(X)/\langle U \rangle$ for each ultrafilter U in the free boolean algebra generated by $Y = \{\sigma_i^n(\neg \neg x) : x \in X, i = 1, ..., n-1\}$, where $\langle U \rangle$ is the BL-filter generated by the boolean filter U.

The plan is to prove that $\mathbf{MV}(\mathbf{Free}_{\mathcal{V}}(X)/\langle U \rangle)$ is a subalgebra of \mathbf{L}_n and then, using Theorem 1.5, decompose each quotient $\mathbf{Free}_{\mathcal{V}}(X)/\langle U \rangle$ into an ordinal sum. To accomplish this we need the following results:

Theorem 3.1 Let **A** be a BL-algebra and $U \in Sp$ **B**(**A**). Then

$$\mathbf{MV}(\mathbf{A}/\langle U \rangle) \cong \mathbf{MV}(\mathbf{A})/(\langle U \rangle \cap \mathbf{MV}(\mathbf{A})).$$

Proof: Let $V =: \langle U \rangle \cap \mathbf{MV}(\mathbf{A})$ and let $f : \mathbf{MV}(\mathbf{A})/V \to \mathbf{MV}(\mathbf{A}/\langle U \rangle)$ be given by

$$f(a/V) = a/\langle U \rangle,$$

for each $a \in MV(\mathbf{A})$. It is easy to see that f is a homomorphism into $\mathbf{MV}(\mathbf{A}/\langle U \rangle)$. Besides, we have that:

1. f is injective

Let $a/\langle U \rangle = b/\langle U \rangle$, with $a,b \in MV(\mathbf{A})$. From Lemma 1.3 we know that there exists $u \in U$ such that $a \wedge u = b \wedge u$. Since $U \subseteq MV(\mathbf{A})$, then $u \in V$. From the fact that u is boolean (see [16, Lemma 2.2]), we have that: $a*u = a \wedge u = b \wedge u \leq b$, thus $u \leq a \to b$ and similarly $u \leq b \to a$. Then $a \to b$ and $b \to a$ are in V and this means that a/V = b/V.

2. f is surjective

Let $a/\langle U \rangle \in MV(\mathbf{A}/\langle U \rangle)$. Then

$$a/\langle U \rangle = \neg \neg (a/\langle U \rangle) = \neg \neg a/\langle U \rangle,$$

and since $\neg \neg a \in MV(\mathbf{A})$ we obtain that $f(\neg \neg a/V) = a/\langle U \rangle$.

By Theorem 2.4, if $U \in Sp$ $\mathbf{B}(\mathbf{Free}_{\mathcal{V}}(X))$, then U is an ultrafilter in $\mathbf{B}(\mathbf{Free}_{\mathcal{MV}_n}(\neg \neg X))$. Moreover,

$$\langle U \rangle \cap \mathbf{MV}(\mathbf{Free}_{\mathcal{V}}(X)) = \langle U \rangle \cap \mathbf{Free}_{\mathcal{MV}_n}(\neg \neg X)$$

is the Stone ultrafilter of $\mathbf{Free}_{\mathcal{MV}_n}(\neg \neg X)$ generated by U. From [18, Chapter 6.3], we have that $\langle U \rangle \cap \mathbf{Free}_{\mathcal{MV}_n}(\neg \neg X)$ is a maximal filter of $\mathbf{Free}_{\mathcal{MV}_n}(\neg \neg X)$. It follows from [18, Corollary 3.5.4] that the MV-algebra

$$\mathbf{MV}(\mathbf{Free}_{\mathcal{V}}(X))/(\langle U \rangle \cap \mathbf{MV}(\mathbf{Free}_{\mathcal{V}}(X)))$$

is an MV-chain in \mathcal{MV}_n , thus from Theorem 3.1 we have:

Theorem 3.2

$$\mathbf{MV}(\mathbf{Free}_{\mathcal{V}}(X)/\langle U \rangle) \cong \mathbf{L}_s$$

with s-1 dividing n-1.

From Theorems 1.5 and 3.2 we obtain:

Theorem 3.3 For each $U \in Sp$ **B**(Free_{\mathcal{V}}(X)) we have that

$$\mathbf{Free}_{\mathcal{V}}(X)/\langle U \rangle \cong \mathbf{L}_s \uplus \mathbf{D}(\mathbf{Free}_{\mathcal{V}}(X)/\langle U \rangle)$$

for some s-1 dividing n-1.

In order to obtain a complete description of $\mathbf{Free}_{\mathcal{V}}(X)$ there is only left to find a description of $\mathbf{D}(\mathbf{Free}_{\mathcal{V}}(X)/\langle U \rangle)$ for each $U \in Sp\ \mathbf{B}(\mathbf{Free}_{\mathcal{V}}(X))$. This last description will depend on the characterization of the variety \mathcal{W} of generalized BL-algebras generated by the generalized BL-chain \mathbf{B} . Therefore we shall firstly consider such variety.

3.1 The subvariety of \mathcal{GBL} generated by B.

We recall that \mathcal{V} is the variety of BL-algebras generated by the BL-chain $\mathbf{T}_n = \mathbf{L}_n \uplus \mathbf{B}$. Let \mathcal{W} be the variety of generalized BL-algebras generated by the chain \mathbf{B} .

Let $\{e_i, i \in I\}$ be the set of equations that define \mathcal{MV}_n as a subvariety of \mathcal{BL} , and $\{d_j, j \in J\}$ be the set of equations that define \mathcal{W} as a subvariety of \mathcal{BBL} . For each $i \in I$, let e'_i be the equation that results from substituting $\neg \neg x$ for each variable x in e_i , and for each $j \in J$, let d'_j the equation that results from substituting $\neg \neg x \to x$ for each variable x in the equation d_j . Let \mathcal{V}' the variety of BL-algebras characterized by the equations of BL-algebras plus the equations $\{e'_i, i \in I\} \cup \{d'_i, j \in J\}$.

Theorem 3.4 $V' \subseteq V$.

Proof: Let \mathbf{A} be a subdirectly irreducible BL-algebra in \mathcal{V}' . From Theorem 1.1, \mathbf{A} is a BL-chain, and by Theorem 1.4, $\mathbf{A} = \mathbf{MV}(\mathbf{A}) \uplus \mathbf{D}(\mathbf{A})$. Since for each $x \in MV(\mathbf{A})$, $\neg \neg x = x$, $\mathbf{MV}(\mathbf{A})$ satisfies equations $\{e_i, i \in I\}$. Then $\mathbf{MV}(\mathbf{A})$ is a chain in \mathcal{MV}_n , i. e., $\mathbf{MV}(\mathbf{A}) \cong \mathbf{L}_s$, with s-1 dividing n-1. Moreover, since for each $x \in D(\mathbf{A})$, $\neg \neg x \to x = x$, $\mathbf{D}(\mathbf{A})$ satisfies equations $\{d_j, j \in J\}$. Hence $\mathbf{D}(\mathbf{A}) = \mathbf{C}$ is a generalized BL-chain in \mathcal{W} . Since \mathbf{A} is subdirectly irreducible, \mathbf{C} is also subdirectly irreducible, and since \mathcal{GBL} is a congruence distributive variety, we can apply Jónsson's Lemma (see [9]) to conclude that $\mathbf{C} \in \mathbf{HSP}_u(\mathbf{B})$. Hence there is a set $J \neq \emptyset$ and an ultrafilter U over J such that \mathbf{C} is a homomorphic image of a subalgebra of \mathbf{B}^J/U . From the proof of [1, Proposition 3.3] it follows that $(\mathbf{L}_n \uplus \mathbf{B})^J/U = \mathbf{L}_n^J/U \uplus \mathbf{B}^J/U$, and since \mathbf{L}_n is finite, $\mathbf{L}_n^J/U \cong \mathbf{L}_n$. Now it is easy to see that $\mathbf{A} = \mathbf{L}_s \uplus \mathbf{C} \in \mathbf{HSP}_u(\mathbf{L}_n \uplus \mathbf{B}) \subseteq \mathcal{V}$.

The next corollary states the main result of this section.

Corollary 3.5 The variety W of generalized BL-algebras generated by \mathbf{B} consist on the generalized BL-algebras \mathbf{C} such that $\mathbf{L}_n \uplus \mathbf{C}$ belongs to \mathcal{V} .

Proof: Given $\mathbf{C} \in \mathcal{W}$, $\mathbf{L}_n \uplus \mathbf{C} \in \mathcal{V}' \subseteq \mathcal{V}$. On the other hand, if \mathbf{C} is a generalized BL-algebra such that $\mathbf{L}_n \uplus \mathbf{C} \in \mathcal{V}$, then the elements of C satisfy equations d'_j for each $j \in J$ and since $\neg \neg x \to x = x$ for each $x \in C$, the elements of C satisfy equations d_j for each $j \in J$. Hence \mathbf{C} is in \mathcal{W} .

3.2 $\mathbf{D}(\mathbf{Free}_{\mathcal{V}}(X)/\langle U \rangle)$

We know that the ultrafilters of a boolean algebra are in bijective correspondence with the homomorphisms from the algebra into the two elements boolean algebra, **2**. Since every upwards closed subset of the poset $Y = \{\sigma_i^n(\neg \neg x) : x \in X, i = 1, \ldots, n-1\}$ is in correspondence with an increasing function from Y onto **2**, and every increasing function from Y can be extended to a homomorphism from $\mathbf{B}(\mathbf{Free}_{\mathcal{V}}(X))$ into **2**, the ultrafilters of $\mathbf{B}(\mathbf{Free}_{\mathcal{V}}(X))$ are in correspondence with the upwards closed subsets of Y. This is summarized in the following lemma:

Lemma 3.6 Consider the poset $Y = \{\sigma_i^n(\neg \neg x) : x \in X, i = 1, ..., n-1\}$. The correspondence that assigns to each upwards closed subset $S \subseteq Y$ the boolean filter U_S generated by the set $S \cup \{\neg y : y \in Y \setminus S\}$, defines a bijection from the set of upwards closed subsets of Y onto the ultrafilters of $\mathbf{B}(\mathbf{Free}_{\mathcal{V}}(X))$.

We shall refer to each member of Sp $\mathbf{B}(\mathbf{Free}_{\mathcal{V}}(X))$ by U_S making explicit reference to the upwards closed subset S that correspond to it.

Lemma 3.7 Let \mathbf{F}_S be the subalgebra of the generalized BL-algebra $\mathbf{D}(\mathbf{Free}_{\mathcal{V}}(X)/\langle U_S \rangle)$ generated by the set $X_S := \{x/\langle U_S \rangle : x \in X, \neg \neg x \in \langle U_S \rangle\}$. Then

$$\mathbf{F}_S = \mathbf{D}(\mathbf{Free}_{\mathcal{V}}(X)/\langle U_S \rangle).$$

Proof: **Free**_{\mathcal{V}} $(X)/\langle U_S \rangle$ is the BL-algebra generated by the set $Z_S = \{x/\langle U_S \rangle : x \in X\}$. From Theorem 3.3 there exists an integer m such that

$$\mathbf{Free}_{\mathcal{V}}(X)/\langle U_S \rangle = \mathbf{L}_m \uplus \mathbf{D}(\mathbf{Free}_{\mathcal{V}}(X)/\langle U_S \rangle).$$

Hence each element of Z_S is either in $L_m \setminus \{\top\}$ or it is in $D(\mathbf{Free}_{\mathcal{V}}(X)/\langle U_S\rangle)$. If $X_S = \emptyset$, then $F_S = D(\mathbf{Free}_{\mathcal{V}}(X)/\langle U_S\rangle) = \{\top\}$. So let suppose $X_S \neq \emptyset$. Let $y \in D(\mathbf{Free}_{\mathcal{V}}(X)/\langle U_S\rangle)$. Recalling that \mathbf{F}_S is the generalized BL-algebra generated by X_S , we will check that y is in F_S . Since $y \in Free_{\mathcal{V}}(X)/\langle U_S\rangle$, y is given by a term on the elements $x/\langle U_S\rangle \in Z_S$. Making induction on the complexity of y we have:

- If y is a generator, i.e, $y = x/\langle U_S \rangle$ for some $x/\langle U_S \rangle \in Z_S$, since $y \in D(\mathbf{Free}_{\mathcal{V}}(X)/\langle U_S \rangle)$, we have that $\top = \neg \neg y = \neg \neg (x/\langle U_S \rangle) = (\neg \neg x)/\langle U_S \rangle$. This happens only if $\neg \neg x \in X_S$.
- Suppose that for each element $z \in D(\mathbf{Free}_{\mathcal{V}}(X)/\langle U_S \rangle)$ of complexity less than k, z can be written as a term in the variables $x/\langle U_S \rangle$ in X_S . Let $y \in D(\mathbf{Free}_{\mathcal{V}}(X)/\langle U_S \rangle)$ be an element of complexity k. The possible cases are the following:
 - 1. $y = a \rightarrow b$ for some elements a, b of complexity < k. In this case the possibilities are:
 - (a) $a \leq b$ in which case $a \to b = \top$ and y can be written as $x/\langle U_S \rangle \to x/\langle U_S \rangle$ for any $x/\langle U_S \rangle \in X_S$, thus $y \in F_S$,
 - (b) a > b. Since $y = a \to b$ is in $D(\mathbf{Free}_{\mathcal{V}}(X)/\langle U_S \rangle)$, the only possibility is that $a, b \in D(\mathbf{Free}_{\mathcal{V}}(X)/\langle U_S \rangle)$ and by inductive hypothesis y is in F_S .

2. y = a * b for some elements a, b of complexity < k. In this case necessarily $a, b \in D(\mathbf{Free}_{\mathcal{V}}(X)/\langle U_S \rangle)$ and by inductive hypothesis y is in F_S .

Then for each $y \in D(\mathbf{Free}_{\mathcal{V}}(X)/\langle U_S \rangle)$, y can be written as a term on the elements of X_S , therefore $y \in F_S$ and we conclude that

$$\mathbf{F}_S = \mathbf{D}(\mathbf{Free}_{\mathcal{V}}(X)/\langle U_S \rangle).$$

With the notation of the previous lemma, we have:

Theorem 3.8 For each U_S in Sp **B**(Free $_{\mathcal{V}}(X)$),

$$\mathbf{D}(\mathbf{Free}_{\mathcal{V}}(X)/\langle U_S \rangle) \cong \mathbf{Free}_{\mathcal{W}}(X_S).$$

Proof: From Theorem 2.6 and Lemma 3.6 we can deduced that $\neg \neg x \in \langle U_S \rangle$ iff $\sigma_1^n(\neg \neg x) \in S$ iff $\sigma_i^n(\neg \neg x) \in S$ for i = 1, ..., n-1. Hence if $\neg \neg x \notin \langle U_S \rangle$ there is a j such that $\sigma_j^n(\neg \neg x) \notin S$. We define, for each $x \in X$,

$$j_x = \begin{cases} \bot & \text{if } \neg \neg x \in \langle U_S \rangle, \\ \max\{i \in \{1, \dots, n-1\} : \sigma_i^n(\neg \neg x) \notin S\} & \text{otherwise.} \end{cases}$$

Let $\mathbf{C} \in \mathcal{W}$ and let $\mathbf{C}' = \mathbf{L}_n \uplus \mathbf{C}$. From Theorem 3.5, \mathbf{C}' is in \mathcal{V} . Given a function $f: X_S \to \mathbf{C}$, define $\hat{f}: X \to \mathbf{C}'$ by the prescriptions:

$$\hat{f}(x) = \begin{cases} f(x/\langle U_S \rangle) & \text{if } \neg \neg x \in \langle U_S \rangle, \\ \frac{n-j_x-1}{n-1} & \text{otherwise.} \end{cases}$$

There is a unique homomorphism $\hat{h}: \mathbf{Free}_{\mathcal{V}}(X) \to \mathbf{C}'$ such that $\hat{h}(x) = \hat{f}(x)$ for each $x \in X$. We have that $U_S \subseteq \hat{h}^{-1}(\{\top\})$. Indeed, if $\neg \neg x \in \langle U_S \rangle$, then $\hat{h}(\sigma_i^n(\neg \neg x)) = \sigma_i^n(\neg \neg(\hat{h}(x))) = \sigma_i^n(\neg \neg f(x/\langle U_S \rangle)) = \sigma_i^n(\top) = \top$. If $\neg \neg x \notin \langle U_S \rangle$, then

$$\hat{h}(\sigma_i^n(\neg \neg x)) = \sigma_i^n(\neg \neg \frac{n-j_x-1}{n-1}) = \sigma_i^n(\frac{n-j_x-1}{n-1}) = \left\{ \begin{matrix} \bot & \text{if } i \leq j_x, \\ \top & \text{otherwise.} \end{matrix} \right.$$

Hence there is a unique homomorphism $h_1 : \mathbf{Free}_{\mathcal{V}}(X)/\langle U_S \rangle \to \mathbf{C}'$ such that $h_1(a/\langle U_S \rangle) = \hat{h}(a)$ for all $a \in \mathbf{Free}_{\mathcal{V}}(X)$. By Lemma 3.7, $\mathbf{D}(\mathbf{Free}_{\mathcal{V}}(X)/\langle U_S \rangle)$ is the algebra generated by X_S . Then the restriction h of h_1 to $\mathbf{D}(\mathbf{Free}_{\mathcal{V}}(X)/\langle U_S \rangle)$ is a homomorphism $h : \mathbf{D}(\mathbf{Free}_{\mathcal{V}}(X)/\langle U_S \rangle) \to \mathbf{C}$, and for each x such that $\neg \neg x \in \langle U_S \rangle$,

$$h(x/\langle U_S \rangle) = h_1(x/\langle U_S \rangle) = \hat{h}(x) = \hat{f}(x) = f(x/\langle U_S \rangle).$$

Therefore we conclude that $\mathbf{D}(\mathbf{Free}_{\mathcal{V}}(X)/\langle U_S \rangle) \cong \mathbf{Free}_{\mathcal{W}}(X_S)$.

Theorem 3.9 The free BL-algebra $\mathbf{Free}_{\mathcal{V}}(X)$ can be represented as a weak boolean product of the family

$$(\mathbf{Free}_{\mathcal{V}}(X)/\langle U_S \rangle) : U_S \in Sp \ \mathbf{B}(\mathbf{Free}_{\mathcal{V}}(X))$$

where $\mathbf{B}(\mathbf{Free}_{\mathcal{V}}(X))$ is the free boolean algebra over the poset $Y = \{\sigma_i^n(\neg \neg x) : x \in X, i = 1, ..., n-1\}$. Moreover, for each $U_S \in Sp\ \mathbf{B}(\mathbf{Free}_{\mathcal{V}}(X))$ there exists $m \geq 2$ such that m-1 divides n-1 and

$$\mathbf{Free}_{\mathcal{V}}(X)/\langle U_S \rangle = \mathbf{L}_m \uplus \mathbf{Free}_{\mathcal{W}}(X_S)$$

where $X_S := \{x/\langle U_S \rangle : \neg \neg x \in \langle U_S \rangle \}$ and W is the variety of generalized BL-algebras generated by \mathbf{B} .

4 Examples

4.1 PL-algebras

Let **G** be a lattice-ordered abelian group (ℓ -group), and $G^- = \{x \in G : x \leq 0\}$ its negative cone. For each pair of elements $x, y \in G^-$ we define the following operators:

$$x * y = x + y$$
 and $x \to y = 0 \land (y - x)$.

Then $\mathbf{G}^- = (G^-, \wedge, \vee, *, \rightarrow, 0)$ is a generalized BL-algebra. The following result can be deduced from [3] (see also [6] and [14]).

Theorem 4.1 The following conditions are equivalent for a generalized BL-algebra A:

- 1. A is a cancellative hoop,
- 2. there is an ℓ -group \mathbf{G} such that $\mathbf{A} \cong \mathbf{G}^-$,
- 3. A is in the variety of generalized BL-algebras generated by \mathbf{Z}^- , where \mathbf{Z} denotes the additive group of integers with the usual order.

So let consider W, the variety of generalized BL-algebras generated by \mathbf{Z}^- , that is, the variety of cancellative hoops. In [15] a description of $\mathbf{Free}_{\mathcal{W}}(X)$ is given for any set X of free generators. Therefore we can have a complete description of free algebras in varieties of BL-algebras generated by the ordinal sum

$$\mathbf{PL}_n = \mathbf{L}_n \uplus \mathbf{Z}^-.$$

Indeed, if we denote by \mathcal{PL}_n the variety of BL-algebras generated by \mathbf{PL}_n , from Theorem 3.9 we obtain that $\mathbf{Free}_{\mathcal{PL}_n}(X)$ is a weak boolean product of algebras of the form

$$\mathbf{L}_s \uplus \mathbf{Free}_{\mathcal{W}}(X')$$

with s-1 dividing n-1 and some set X' of cardinality less or equal than X. Therefore, in the present case, the BL-algebra $\mathbf{Free}_{\mathcal{PL}_n}(X)$ can be completely described as a weak boolean product of ordinal sums of two known algebras.

From [14, Theorem 2.8] \mathcal{PL}_2 is the variety of PL-algebras \mathcal{PL} . From Remark 2.14, Sp **B**(Free $_{\mathcal{PL}}(X)$) is the Cantor space $\mathbf{2}^{|X|}$. From Theorem 3.9, the free PL-algebra over a set X can be describe as a weak boolean product over the Cantor space $\mathbf{2}^{|X|}$ of algebras of the form

$$\mathbf{L_2} \uplus \mathbf{Free}_{\mathcal{W}}(X')$$

for some set X' of cardinality less or equal than X.

Given a BL-algebra **A**, the radical $R(\mathbf{A})$ of **A** is the intersection of all maximal implicative filters of **A**. We have that $\mathbf{r}(\mathbf{A}) = (R(\mathbf{A}), *, \rightarrow, \wedge, \vee, \top)$ is a generalized BL-algebra. Let

$$\mathcal{PL}^r = \{ \mathbf{R} : \mathbf{R} = \mathbf{r}(\mathbf{A}) \text{ for some } \mathbf{A} \in \mathcal{PL} \}.$$

 \mathcal{PL}^r is a variety of generalized BL-algebras. In [16] a description of $\mathbf{Free}_{\mathcal{PL}}(X)$ is given. From Example 4.7 and Theorem 5.7 in the mentioned paper we obtained that $\mathbf{Free}_{\mathcal{PL}}(X)$ is the weak boolean product of the family ($\mathbf{L}_2 \uplus$

Free $_{\mathcal{PL}^r}(S): S \subseteq \mathbf{2}^{|X|}$) over the Cantor space $\mathbf{2}^{|X|}$. In order to check that our description and the one given in [16] coincide there is only left to check that $\mathcal{PL}^r = \mathcal{W}$. From Corollary 3.5 we have that \mathcal{W} consist on the generalized BL-algebras \mathbf{C} such that $\mathbf{L}_2 \uplus \mathbf{C} \in \mathcal{PL}$.

Theorem 4.2 $\mathcal{PL}^r = \mathcal{W}$.

Proof: Let $\mathbf{C} \in \mathcal{PL}^r$. Then there exists a BL-algebra $\mathbf{A} \in \mathcal{PL}$ such that $\mathbf{r}(\mathbf{A}) = \mathbf{C}$. It is not hard to check that $\mathbf{L}_2 \uplus \mathbf{C}$ is a subalgebra of \mathbf{A} , thus $\mathbf{L}_2 \uplus \mathbf{C}$ is in \mathcal{PL} . It follows that $\mathbf{C} \in \mathcal{W}$. On the other hand, let $\mathbf{C} \in \mathcal{W}$. Then $\mathbf{L}_2 \uplus \mathbf{C}$ is in \mathcal{PL} , and $\mathbf{C} \in \mathcal{PL}^r$.

4.2 Finitely generated free algebras

As we mentioned in the introduction, when the set of generators X is finite, let say of cardinality k, the algebra $\mathbf{Free}_{\mathcal{V}}(X)$ is described in [10] as a direct product of algebras of the form $\mathbf{L}_s \uplus \mathbf{Free}_{\mathcal{V}}(X')$, with s-1 that divides n-1 and some set X' of cardinality less or equal than the cardinality of X, where \mathcal{W} is again the subvariety of \mathcal{GBL} generated by \mathbf{B} . The method used to describe the algebras strongly relies on the fact that the boolean elements of $\mathbf{Free}_{\mathcal{V}}(X)$ form a finite boolean algebra. Indeed, $\mathbf{Free}_{\mathcal{V}}(X)$ is a direct product of n^k algebras obtained by taking the quotients by the implicative filters generated by the atoms of $\mathbf{B}(\mathbf{Free}_{\mathcal{V}}(X))$. In this case, once you know the form of the atom that generates the ultrafilter U you also know the number s such that $\mathbf{MV}((\mathbf{Free}_{\mathcal{V}}(X))/U) = \mathbf{L}_s$.

Notice that when the set X of generators is finite, of cardinality k, then $Y = \{\sigma_i^n(\neg \neg x) : x \in X, i = 1, ..., n-1\}$ is the cardinal sum of k chains of length n-1. Therefore the number of upwards closed subsets of Y is n^k . Since weak boolean products over discrete finite spaces coincide with direct products, Theorem 3.9 asserts that $\mathbf{Free}_{\mathcal{V}}(X)$ is a direct product of n^k BL-algebras of the form $\mathbf{L}_s \uplus \mathbf{Free}_{\mathcal{V}}(Y)$, with s-1 that divides n-1 and some set Y of cardinality less or equal than k.

Therefore the description given in the present paper coincides with the one in [10]. But in any case the description given in [10], based on a detailed analysis of the structure of the atoms of $\mathbf{B}(\mathbf{Free}_{\mathcal{V}}(X))$ for a finite X, is more precise because it gives the number of factors of each kind appearing in the direct product representation.

References

- P. Aglianò and F. Montagna, Varieties of BL-algebras I: General Properties,
 J. Pure Appl. Algebra, 181 (2003) 105-129.
- [2] P. Aglianò, I. M. A. Ferreirim and F. Montagna, Basic hoops: An algebraic study of continuous t-norms, Stud. Log., to appear.
- [3] K. Amer, Equationally complete classes of conmutative monoids with monus, Algebra Univers. 18 (1984) 129-131.
- [4] R. Balbes and P. Dwinger, Distributive Lattices (University of Missoury Press, Columbia, 1974).

- [5] D. Bigelow and S. Burris, Boolean algebras of factor congruences, Acta Sci. Math. 54 (1990), 11-20.
- [6] W. J. Block and I. M. A. Ferreirim, Hoops and their implicational reducts (Abstract), in: Algebraic Methods in Logic and Computer Sciences, Banach Center Publications 28, (Polish Academy of Science, Warsaw, 1993) 219-230.
- [7] W. J. Block and I. M. A. Ferreirim, On the structure of hoops, Algebra Univers. 43 (2000), 233-257.
- [8] V. Boicescu, A. Filipoiu, G. Georgescu and S. Rudeanu, Łukasiewicz-Moisil Algebras (Elsevier, Amsterdam, 1991).
- [9] S. Burris and H. P. Sankappanavar, A Course in Universal Algebra (Springer-Verlag, New York, Heidelberg, Berlin, 1981).
- [10] M. Busaniche, Free algebras in varieties of BL-algebras generated by a chain, Algebra Univers. 50 (2003), 259-277.
- [11] R. Cignoli, Moisil Algebras, Notas de Lógica Matemática, Universidad Nac. del Sur, Bahía Blanca, Argentina 27 (1970)
- [12] R. Cignoli, Some algebraic aspects of Many-valued logics, in: A. I. Arruda, N. C. A. da Costa A.M. Sette, eds., Proceedings of the third Brazilian Conference on Mathematical Logic (Sociedade Brasileira de Lógica, São Paulo, 1980) 49-69.
- [13] R. Cignoli, Proper n-Valued Łukasiewicz Algebras as S-algebras of Łukasiewicz n-Valued Propositional Calculi, Stud. Log. 41 (1982), 3-16.
- [14] R. Cignoli and A. Torrens, An Algebraic Analysis of Product Logic, Mult. Valued Log. 5 (2000), 45-65.
- [15] R. Cignoli and A. Torrens, Free cancelative hoops, Algebra Univers. 43 (2000), 213-216.
- [16] R. Cignoli and A. Torrens, Free algebras in varieties of BL-algebras with a Boolean retract, Algebra Univers. 48 (2002), 55-79.
- [17] R. Cignoli and A. Torrens, Hájek basic fuzzy logic and Łukasiewicz infinitevalued logic, Arch. Math. Logic, 42 (2003), 361-370.
- [18] R. Cignoli, M. I. D'Ottaviano and D. Mundici, Algebraic foundations of many-valued reasoning (Kluwer, Dordrecht, 2000).
- [19] R. Cignoli, F. Esteva, L. Godo and A. Torrens, Basic Logic is the logic of continuous t-norms and their residua, Soft Computing 4 (2000), 106 - 112.
- [20] A. Di Nola, G. Georgescu and L. Leustean, Boolean products of BL-algebras, J. Math. Anal Appl. 251 (2000), 106-131.
- [21] P. Hájek, Metamathematics of Fuzzy Logic (Kluwer, Dordrecht, 1998).
- [22] A. Horn, Free L-algebras, J. Symb. Logic 34 (1969), 475-480.

- [23] A. Iorgulescu, Connections between MV_n -algebras and n-valued Lukasiewicz-Moisil algebras Part I, Discrete Math. 181 (1998), 155-177.
- [24] R. McNaughton, A theorem about infinite-valued sentential logic, J. Symb. Logic, 16 (1951), 1-13.
- [25] A. J. Rodríguez and A. Torrens, Wajsberg Algebras and Post Algebras, Stud. Log. 53 (1994), 1 19.
- [26] J. von Plato, Skolem's discovery of Gödel Dummett Logic, Stud. Log. 73 (2003), 153 157.