Heat-diffusion maximal operators for Laguerre semigroups with negative parameters *

R. Macías, C. Segovia and J. L. Torrea

Dedicated to the memory of Miguel de Guzmán

Abstract

We prove L^p boundedness for the maximal operator of the heat semigroup associated to the Laguerre functions, $\{\mathcal{L}_k^{\alpha}\}_k$, when the parameter α is greater than -1. Namely, the maximal operator is of strong type (p,p) if p>1 and $\frac{2}{2+\alpha}< p<\frac{2}{-\alpha}$, when $-1<\alpha<0$. If $\alpha\geq 0$ there is strong type for $1< p\leq \infty$. The behavior at the end points is studied in detail.

1 Introduction

The Laguerre polynomials $L_{k}^{\alpha}\left(y\right)$ are given by

$$e^{-y}y^{\alpha}L_{k}^{\alpha}\left(y\right)=\frac{1}{k!}\frac{d}{dy^{k}}\left(e^{-y}y^{k+\alpha}\right),$$

where y is positive. We assume that $\alpha > -1$. The Laguerre polynomials $\{L_k^{\alpha}(y)\}_{k=0}^{\infty}$ form a orthogonal system with respect to the measure $e^{-y}y^{\alpha}dy$. More precisely,

$$\int_0^\infty L_k^\alpha(y) L_j^\alpha(y) e^{-y} y^\alpha dy = \frac{\Gamma(k+\alpha+1)}{\Gamma(k+1)} \delta_{kj},$$

thus, the Laguerre functions $\mathcal{L}_k^{\alpha}(y)$ defined by

$$\mathcal{L}_{k}^{\alpha}\left(y\right) = \left(\frac{\Gamma\left(k+1\right)}{\Gamma\left(k+\alpha+1\right)}\right)^{1/2} e^{-y/2} y^{\alpha/2} L_{k}^{\alpha}\left(y\right),\,$$

for a given α , form an orthonormal set with respect to the Lebesgue measure. Standard references for Laguerre functions and polynomials are [1], [8] and [9].

First author was partially supported by CONICET and Universidad Nacional del Litoral, Argentina.

Second author was partially supported by CONICET, Argentina.

2000 Mathematical Subject Classification: 42A45, 42B15, 42B20, 42B25, 42C10.

Keywords. Heat and Poisson semigroups, Laguerre functions.

^{*}Partially supported by Dirección General de Investigación, Ministerio de Ciencia y Tecnología, BFM2002-04013-C02-02 and Proyecto IALE (UAM-Banco Santander Central-Hispano.

We define the heat diffusion kernel $W^{\alpha}\left(t,y,z\right)$ for $\alpha>-1,\,t>0,\,y>0$ and z>0 as

(1)
$$W^{\alpha}(t, y, z) = \sum_{n=0}^{\infty} e^{-t(n+(\alpha+1)/2)} \mathcal{L}_{n}^{\alpha}(y) \, \mathcal{L}_{n}^{\alpha}(z) \,,$$

and the heat diffusion integral $W^{\alpha}f(t,y)$ as

$$W^{\alpha} f(t, y) = \int_{0}^{\infty} W^{\alpha}(t, y, z) f(z) dz.$$

The heat diffusion integral $W_{\alpha}f(t,y)$ satisfies the semigroup property

$$W^{\alpha}f\left(t+s,y\right) = \int_{0}^{\infty} W^{\alpha}\left(t,y,z\right) W^{\alpha}f\left(s,z\right) dz.$$

The maximal operator $W^{\alpha,*}f(t)$ associated to the heat diffusion integral $W_{\alpha}f(t,y)$ is given by $W^{\alpha,*}f(y) = \sup_{t>0} |W^{\alpha}f(t,y)|$.

We define the fractional maximal function $M_{\theta}f(x)$ for $0 \le \theta < 1$ as

$$M_{\theta}f(x) = \sup_{h>0} \frac{1}{(2h)^{1-\theta}} \int_{|y| \le h} |f(x-y)| dy.$$

If $\theta = 0$, $M_0 f(x)$ is the Hardy-Littlewood maximal function. It is well known that if y^{δ} is a weight with $-1 < \delta < p - 1$, then $M_0 f$ is of strong type (p, p) for p > 1 and of weak type (1, 1) if p = 1 with the measure $y^{\delta} dy$. As references see [4], [6].

The purpose of this paper is to study the action of the maximal operator $W^{\alpha,*}f$ just defined on the spaces $L^p((0,\infty),dy)$. For $\alpha \geq 0$ the positive results we give here were obtained by K. Stempak in [7] using techniques similar to those of B. Muckenhoupt, see [3]. The situation for $-1 < \alpha < 0$ is rather different since, for instance, the functions $\mathcal{L}_k^{\alpha}(y)$ do not belong to every $L^p((0,\infty),dy)$. This indicates that the general theory of semigroup, see [5], does not apply.

2 Statement of the results

Let N_{α} denote the interval

$$N_{\alpha} = \begin{cases} \left(2/\left(2+\alpha \right), 2/\left(-\alpha \right) \right) & \text{, if } -1 < \alpha < 0, \\ \text{and} & \\ \left(1, \infty \right] & \text{, if } \alpha \geq 0. \end{cases}$$

With this notation, we have the following result:

Theorem 1 (Strong type) Let $-1 < \alpha < \infty$. The maximal operator $W^{\alpha,*}f(y)$ satisfies

$$\int_0^\infty W^{\alpha,*} f(y)^p dy \le C_{\alpha,p} \int_0^\infty |f(y)|^p dy,$$

with a constant $C_{\alpha,p}$ depending only on α , provided that $p \in N_{\alpha}$. That is to say

The following theorem gives the behaviour of $W^{\alpha,*}f$ at the end points of N_{α} .

Theorem 2 (End points) Let $-1 < \alpha$. At the end points of N_{α} we have

- (a) If $-1 < \alpha < 0$, the upper end point of N_{α} is equal to $2/(-\alpha)$. The operator $W^{\alpha,*}f$ is of weak type and not of strong type $(2/(-\alpha), 2/(-\alpha))$.
- (b) If $\alpha \geq 0$, the upper end point of N_{α} is equal to ∞ . The operator $W^{\alpha,*}f$ is of strong $type(\infty,\infty)$.
- (c) If $-1 < \alpha < 0$, the lower end point of N_{α} is equal to $2/(2+\alpha)$. The operator $W^{\alpha,*}f$ is of restricted weak type and not of weak type $(2/(2+\alpha), 2/(2+\alpha))$.
- (d) If $\alpha \geq 0$, the lower end point of N_{α} is equal to 1. The operator $W^{\alpha,*}f$ is of weak type and not of strong type (1,1).

3 Lemmas

Throughout this paper we shall assume that f(x) is a non-negative function. The constants will not have the same value in each occurrence.

Lemma 1 Given β , $0 \le \beta < 1$, there exists a constant C_{β} such that for every y > 0

$$y^{-\beta/2} M_{\beta} \left(f(z) z^{-\beta/2} \right) (y) \leq C_{\beta} \left\{ y^{\beta/2} \frac{1}{y} \int_{0}^{y} f(z) z^{-\beta/2} dz + \sup_{h \geq y/2} \left(\frac{y^{-\beta/2}}{(2h)^{1-\beta}} \int_{y}^{y+h} f(z) z^{-\beta/2} dz \right) + M_{0} f(y) \right\},$$

and

(4)
$$\sup_{h \ge y/2} \left(y^{-\beta/2} \frac{1}{(2h)^{1-\beta}} \int_{y}^{y+h} f(z) z^{-\beta/2} dz \right) \le C_{\beta} y^{-\beta/2} M\left(f(z) z^{\beta/2} \right) (y).$$

Proof. If $y \leq 2h$, we have

$$\begin{split} \frac{1}{(2h)^{1-\beta}} \int_{y-h}^{y+h} f\left(z\right) z^{-\beta/2} dz & \leq & \frac{1}{(2h)^{1-\beta}} \int_{0}^{y} f\left(z\right) z^{-\beta/2} dz + \frac{1}{(2h)^{1-\beta}} \int_{y}^{y+h} f\left(z\right) z^{-\beta/2} dz \\ & \leq & \frac{1}{y^{1-\beta}} \int_{0}^{y} f\left(z\right) z^{-\beta/2} dz + \sup_{h \geq y/2} \left(\frac{1}{(2h)^{1-\beta}} \int_{y}^{y+h} f\left(z\right) z^{-\beta/2} dz \right). \end{split}$$

On the other hand, if $y \ge 2h$, then $h \le y - h$ and we get

$$\frac{1}{(2h)^{1-\beta}} \int_{y-h}^{y+h} f(z) z^{-\beta/2} dz \leq \frac{2 \cdot h^{1-\beta/2}}{(2h)^{1-\beta}} \frac{1}{2h} \int_{y-h}^{y+h} f(z) dz
\leq 2^{\beta/2} (2h)^{\beta/2} M_0 f(y) \leq 2^{\beta/2} y^{\beta/2} M_0 f(y).$$

Thus,

$$\frac{y^{-\beta/2}}{(2h)^{1-\beta}} \int_{y-h}^{y+h} f(z) z^{-\beta/2} dz \leq y^{\beta/2} \frac{1}{y} \int_{0}^{y} f(z) z^{-\beta/2} dz
+ sup_{y \leq 2h} \left(\frac{y^{-\beta/2}}{(2h)^{1-\beta}} \int_{y}^{y+h} f(z) z^{-\beta/2} dz \right) + 2^{\beta/2} M_{0} f(y).$$

which proves (3).

Now, let $y \leq 2h$ and choose k_0 as the unique integer satisfying $2^{k_0}y < y + h \leq 2^{k_0+1}y$, then

$$\frac{1}{(2h)^{1-\beta}} \int_{y}^{y+h} f(z) z^{-\beta/2} dz \leq \frac{1}{(2h)^{1-\beta}} \sum_{k=0}^{k_0} \int_{2^{k}y}^{2^{k+1}y} f(z) \frac{z^{\beta/2}}{z^{\beta}} dz
\leq \frac{y^{-\beta}}{(2h)^{1-\beta}} \sum_{k=0}^{k_0} 2^{-\beta k} \int_{2^{k}y}^{2^{k+1}y} f(z) z^{\beta/2} dy
\leq 2 \frac{y^{1-\beta}}{(2h)^{1-\beta}} \sum_{k=0}^{k_0} 2^{(1-\beta)k} \frac{1}{2^{k+1}y} \int_{0}^{2^{k+1}y} f(z) z^{\beta/2} dy
\leq c_{\beta} 2^{(1-\beta)k_0} \frac{y^{1-\beta}}{(2h)^{1-\beta}} M_0 \left(f(z) z^{\beta/2} \right) (y)
\leq c_{\beta} \left(\frac{y+h}{y} \right)^{1-\beta} \frac{y^{1-\beta}}{(2h)^{1-\beta}} M_0 \left(f(z) z^{\beta/2} \right) (y)
\leq c_{\beta} \left(\frac{y+h}{2h} \right)^{1-\beta} M_0 \left(f(z) z^{\beta/2} \right) (y) \leq c_{\beta} M_0 \left(f(z) z^{\beta/2} \right) (y),$$

thus, we get

$$\sup_{h \ge y/2} \left(\frac{y^{-\beta/2}}{(2h)^{1-\beta}} \int_{y}^{y+h} f(z) z^{-\beta/2} dz \right) \le c_{\beta} y^{-\beta/2} M_0 \left(f(z) z^{\beta/2} \right) (y) ,$$

ending the proof of the lemma.

Lemma 2 Let $-1 < \alpha$. We have the following estimates for the heat diffusion integral $W^{\alpha}f(t,y)$:

(a) If
$$-1 < \alpha \le 0$$
, we denote $\beta = -\alpha$. Then

(5)
$$W^{\alpha} f(t, y) \leq C_{\alpha} \left\{ e^{-t/4} M_0 f(y) + e^{-t(1-\beta)/4} y^{-\beta/2} M_{\beta} \left(z^{-\beta/2} f(z) \right) (y) \right\}.$$

(b) If
$$0 \le \alpha$$
, then,

$$(6) W^{\alpha} f(t, y) \leq C_{\alpha} e^{-t/4} M_0 f(y).$$

Let us consider the generating function for the Laguerre polynomials

$$\sum_{n=0}^{\infty} \frac{\Gamma(n+1)}{\Gamma(n+\alpha+1)} L_n^{\alpha}(y) L_n^{\alpha}(z) r^n = \frac{1}{1-r} e^{-r\frac{z+y}{1-r}} (ryz)^{-\alpha/2} I_{\alpha} \left(2 \frac{(ryz)^{1/2}}{1-r} \right),$$

where $0 \le r < 1$, and $I_{\alpha}(x) = e^{-i\alpha\pi/2}J_{\alpha}(ix)$, the modified Bessel function, see [1], p.189 (20)], [8] and [9] Then, let $Q_{\alpha}(y, z, r)$ be the function

$$Q_{\alpha}(y,z,r) = \sum_{0}^{\infty} \frac{\Gamma(n+1)}{\Gamma(n+\alpha+1)} e^{-y/2} y^{\alpha/2} L_{n}^{\alpha}(y) e^{-z/2} z^{\alpha/2} L_{n}^{\alpha}(z) r^{n+(\alpha+1)/2}$$

$$= \sum_{0}^{\infty} \mathcal{L}_{n}^{\alpha}(y) \mathcal{L}_{n}^{\alpha}(z) r^{n+(\alpha+1)/2} = \frac{r^{1/2}}{1-r} e^{-(z+y)/2} e^{-r(z+y)/(1-r)} I_{\alpha} \left(2 \frac{(ryz)^{1/2}}{1-r} \right).$$

Taking into account (1), this shows that $Q_{\alpha}(y, z, e^{-t}) = W^{\alpha}(t, y, z)$.

If $e^{-t} = \left(\frac{1-s}{1+s}\right)^2$, then $0 < s \le 1$ holds if and only if $0 < t \le \infty$. Thus, if we define

$$R_{\alpha}(y,z,s) = Q_{\alpha}\left(y,z,\left(\frac{1-s}{1+s}\right)^{2}\right),$$

we get that $R_{\alpha}\left(y,z,\frac{1-e^{-t/2}}{1+e^{-t/2}}\right)=W^{\alpha}\left(t,y,z\right)$. Moreover,

$$R_{\alpha}(y,z,s) = \frac{1}{2} \frac{1-s^2}{2s} e^{-\frac{1}{4}\left(s+\frac{1}{s}\right)\left(y^{1/2}-z^{1/2}\right)^2} e^{-\frac{1}{2}\left(s+\frac{1}{s}\right)\left(yz\right)^{1/2}} I_{\alpha}\left(\frac{1-s^2}{2s}\left(yz\right)^{1/2}\right).$$

Thus,

$$W^{\alpha}f(t,y) = \int_{0}^{\infty} W^{\alpha}(t,y,z) f(z) dz = \int_{0}^{\infty} R_{\alpha}(y,z,s) f(z) dz$$

for
$$s = (1 - e^{-t/2}) / (1 + e^{-t/2})$$
.

We shall need in the sequel the following estimations for $I_{\alpha}(x)$: Let $\alpha > -1$, there exist two constants c_{α} and C_{α} such that

(7)
$$(1) \text{ If } 0 \le x \le 1, \text{ then } c_{\alpha} x^{\alpha} \le I_{\alpha}(x) \le C_{\alpha} x^{\alpha}.$$

$$(2) \text{ If } x \ge 1, \text{ then } c_{\alpha} \frac{1}{x^{1/2}} e^{x} \le I_{\alpha}(x) \le C_{\alpha} \frac{1}{x^{1/2}} e^{x}.$$

See, [1], p.5, (12) and [1], p.86, (5).

Let $D_s = \left\{ x : \left(\frac{1-s^2}{2s}\right)^2 x \ge 1 \right\}$. Then, the function $\chi_{D_s}(yz)$ is equal to 1 if and only if $\left(\frac{1-s^2}{2s}\right)^2 yz \ge 1$. By (7), $\chi_{D_s}(yz) R_{\alpha}(y,z,s)$ is bounded by constant times

(8)
$$\frac{1}{2} \frac{1-s^2}{2s} e^{-\frac{1}{4}\left(s+\frac{1}{s}\right)\left(z^{1/2}-y^{1/2}\right)^2 - \frac{1}{2}\left(s+\frac{1}{s}\right)(zy)^{1/2}} \chi_{D_s}\left(yz\right) \frac{e^{\left(\frac{1-s^2}{2s}\right)(zy)^{1/2}}}{\left(\frac{1-s^2}{2s}\right)^{1/2}\left(zy\right)^{1/4}}.$$

Since $-\frac{1}{2}\left(s+\frac{1}{s}\right)+\left(\frac{1-s^2}{2s}\right)=-s$, we get that (8) is equal to

$$\frac{1}{2} \frac{1 - s^{2}}{2s} e^{-\frac{1}{4} \left(s + \frac{1}{s}\right) \left(z^{1/2} - y^{1/2}\right)^{2} - s(zy)^{1/2}} \chi_{D_{s}} \left(yz\right) \frac{1}{\left(\frac{1 - s^{2}}{2s}\right)^{1/2} \left(zy\right)^{1/4}} \\
\leq \frac{1}{2} \frac{1 - s^{2}}{2s} e^{-\frac{1}{4s} \left(z^{1/2} - y^{1/2}\right)^{2}} \chi_{D_{s}} \left(yz\right) \frac{1}{\left(\frac{1 - s^{2}}{2s}\right)^{1/2} \left(zy\right)^{1/4}}.$$
(9)

Analogously, by (7), $\chi_{D_s^c}(yz) R_{\alpha}(y,z,s)$ is bounded by constant times

(10)
$$\frac{1}{2} \frac{1-s^2}{2s} e^{-\frac{1}{4s} \left(z^{1/2} - y^{1/2}\right)^2} \chi_{D_s^c}(yz) \left(\frac{1-s^2}{2s} \left(yz\right)^{1/2}\right)^{\alpha}.$$

We denote

$$H_{\alpha,1}(s,y) = \int_0^\infty \chi_{D_s}(yz) R_\alpha(y,z,s) f(z) dz$$

and
$$H_{\alpha,2}(s,y) = \int_0^\infty \chi_{D_s^c}(yz) R_\alpha(y,z,s) f(z) dz.$$

Let y > 0, z > 0 and s > 0. For every integer k we define

$$B_k(y) = \left\{ z : 2^k s^{1/2} < \left| z^{1/2} - y^{1/2} \right| \le 2^{k+1} s^{1/2} \right\},$$

and let k_0 be an integer to be fixed later, then

$$H_{\alpha,1}(s,y) \leq C_{\alpha} \sum_{-\infty}^{k_{0}} \frac{1-s^{2}}{2s} e^{-2^{2k}/4} \int_{B_{k}(y)} \chi_{D_{s}}(yz) \frac{f(z)dz}{\left(\frac{1-s^{2}}{2s}\right)^{1/2} (zy)^{1/4}}$$

$$+ C_{\alpha} \sum_{k_{0}+1}^{+\infty} \frac{1-s^{2}}{2s} e^{-2^{2k}/4} \int_{B_{k}(y)} \chi_{D_{s}}(yz) \frac{f(z)dz}{\left(\frac{1-s^{2}}{2s}\right)^{1/2} (zy)^{1/4}}$$

$$= H_{\alpha,11}(s,y) + H_{\alpha,12}(s,y).$$

For k_0 and $B_k(y)$ having the same meaning as before, by (10), we have that $H_{\alpha,2}(s,y)$ is bounded by a constant times

(12)
$$\sum_{-\infty}^{k_0} \frac{1 - s^2}{2s} e^{-2^{2k}/4} \int_{B_k(y)} \chi_{D_s^c}(yz) \left(\frac{1 - s^2}{2s} (yz)^{1/2}\right)^{\alpha} f(z) dz + \sum_{k_0 + 1}^{+\infty} \frac{1 - s^2}{2s} e^{-2^{2k}/4} \int_{B_k(y)} \chi_{D_s^c}(yz) \left(\frac{1 - s^2}{2s} (yz)^{1/2}\right)^{\alpha} f(z) dz = H_{\alpha,21}(s,y) + H_{\alpha,22}(s,y).$$

Let us fixed k_0 as the unique integer satisfying $2^{k_0+2}s^{1/2} < y^{1/2} \le 2^{k_0+3}s^{1/2}$. Since $|z^{1/2} - y^{1/2}| \le 2^{k+1}s^{1/2}$, if $k \le k_0$ and $z \in B_k(y)$ then, we get

(13)
$$y/4 \le \left(y^{1/2} - 2^{k+1}s^{1/2}\right)^2 \le z \le \left(y^{1/2} + 2^{k+1}s^{1/2}\right)^2 \le 2y.$$

If $k \geq k_0$ and $z \in B_k(y)$, since $\left|z^{1/2} - y^{1/2}\right| \leq 2^{k+1}s^{1/2}$, we get

(14)
$$0 \le z \le 100.2^{2k} s$$
 and $0 \le y \le 100.2^{2k} s$.

Proof of Lemma 2. We are going to estimate $H_{\alpha,11}(s,y)$, $H_{\alpha,12}(s,y)$, $H_{\alpha,21}(s,y)$, and $H_{\alpha,22}(s,y)$ for $\alpha > -1$.

Estimate of $H_{\alpha,11}(s,y)$. By (11) and (13), $H_{\alpha,11}(s,y)$ is less than or equal to a constant times the sum for $k \leq k_0$ of the terms

(15)
$$\left(\frac{1-s^2}{2s}\right)^{1/2} e^{-2^{2k}/4} y^{-1/2} \int_{\left(y^{1/2}-2^{k+1}s^{1/2}\right)^2}^{\left(y^{1/2}+2^{k+1}s^{1/2}\right)^2} f(z) dz.$$

Since $(y^{1/2} + 2^{k+1}s^{1/2})^2 - (y^{1/2} - 2^{k+1}s^{1/2})^2 = 4y^{1/2}2^{k+1}s^{1/2}$, we have that (15) is bounded by a constant times

(16)
$$\left(1 - s^2\right)^{1/2} e^{-2^{2k}/4} 2^k \frac{1}{4y^{1/2} 2^{k+1} s^{1/2}} \int_{\left(y^{1/2} - 2^{k+1} s^{1/2}\right)^2}^{\left(y^{1/2} + 2^{k+1} s^{1/2}\right)^2} f(z) dz.$$

Then, by (13) and (16), we get

(17)
$$H_{\alpha,11}(s,y) \le C_{\alpha} \left(1 - s^{2}\right)^{1/2} M_{0} f(y).$$

holds for $\alpha > -1$.

Estimate of $H_{\alpha,12}(s,y)$. By (11), we have that $H_{\alpha,12}(s,y)$ is bounded by a constant times the sum for $k > k_0$ of the terms

(18)
$$\frac{1-s^2}{2s}e^{-2^{2k}/4}\int_{B_k(y)}\chi_{D_s}(yz)\frac{f(z)dz}{\left(\frac{1-s^2}{2s}\right)^{1/2}(zy)^{1/4}}.$$

The condition $\chi_{D_s}(yz) = 1$ is equivalent to $z \geq \frac{1}{y} \left(\frac{2s}{1-s^2}\right)^2$, and by (14), $y \leq 1002^{2k}s$. Hence,(18) is bounded by

$$\frac{1-s^2}{2s}e^{-2^{2k}/4} \int_0^{1002^{2k}s} \chi_{D_s}(yz) \frac{f(z) dz}{\left(\frac{1-s^2}{2s}\right)^{1/2} (zy)^{1/4}} \le \left(\frac{1-s^2}{2s}\right) e^{-2^{2k}/4} \int_0^{1002^{2k}s} f(z) dz
\le C \left(1-s^2\right) e^{-2^{2k}/4} 2^{2k} \frac{1}{1002^{2k}s} \int_0^{1002^{2k}s} f(z) dz
\le C \left(1-s^2\right) e^{-2^{2k}/4} 2^{2k} M_0 f(y).$$

Then, we get that $H_{\alpha,12}(s,y)$ is bounded by a constant times by

$$(19) \qquad \left(1 - s^2\right) M_0 f\left(y\right),\,$$

for $\alpha > -1$.

Estimate of $H_{\alpha,21}(s,y)$, for the case $-1 < \alpha < 0$. Let $\beta = -\alpha$. By (13) we have that $H_{\alpha,21}(s,y)$ is bounded by a constant times the sum for $k \le k_0$ of the terms

$$\left(\frac{1-s^2}{2s}\right)e^{-2^{2k}/4}\int_{B_k(y)}\chi_{D_s^c}(zy)\left(\left(\frac{1-s^2}{2s}\right)(zy)^{1/2}\right)^{-\beta}f(z)dz$$

$$(20) \leq \left(\frac{1-s^2}{2s}\right)^{1-\beta}e^{-2^{2k}/4}y^{-\beta/2}\left(\frac{4y^{1/2}2^{k+1}s^{1/2}}{4y^{1/2}2^{k+1}s^{1/2}}\right)^{1-\beta}\int_{(y^{1/2}-2^{k+1}s^{1/2})^2}^{(y^{1/2}+2^{k+1}s^{1/2})^2}\chi_{D_s^c}(zy)z^{-\beta/2}f(y)dz.$$

If $\left(\frac{1-s^2}{2s}\right)(yy/4)^{1/2} > 1$, then for $z \ge y/4$ it turns out that $\left(\frac{1-s^2}{2s}\right)(yz)^{1/2} > 1$, thus $\chi_{D_s^c}(zy) = 0$ and the integral above is equal to zero. Therefore, we can assume that $\left(\frac{1-s^2}{2s}\right)(yy/4)^{1/2} \le 1$, which implies that

$$\left(\frac{1-s^2}{2s}\right)y \le 2.$$

Then, by (21), the expression (20), is smaller than or equal to a constant times

$$(1 - s^{2})^{\frac{1-\beta}{2}} e^{-2^{2k}/4} 2^{k(1-\beta)} y^{-\beta/2} \frac{1}{\left(4y^{1/2} 2^{k+1} s^{1/2}\right)^{1-\beta}} \int_{\left(y^{1/2} - 2^{k+1} s^{1/2}\right)^{2}}^{\left(y^{1/2} + 2^{k+1} s^{1/2}\right)^{2}} z^{-\beta/2} f(z) dz$$

$$\leq \left(1 - s^{2}\right)^{\frac{1-\beta}{2}} e^{-2^{2k}/4} 2^{k(1-\beta)} y^{-\beta/2} M_{\beta} \left(z^{-\beta/2} f(z)\right) (y) .$$

Hence, for $-1 < \alpha < 0$, $H_{\alpha,21}(s,y)$ is bounded by a constant times

(22)
$$\left(1 - s^2\right)^{\frac{1-\beta}{2}} y^{-\beta/2} M_{\beta} \left(z^{-\beta/2} f(z)\right) (y) .$$

Estimate of $H_{\alpha,21}(s,y)$ for the case $\alpha \geq 0$. By (13), we have that $H_{\alpha,21}(s,y)$ bounded by a constant times the sum for $k \leq k_0$ of the terms

$$\frac{1-s^{2}}{2s}e^{-2^{2k}/4}\int_{B_{k}(y)}\chi_{D_{s}^{c}}(yz)\left(\frac{1-s^{2}}{2s}(yz)^{1/2}\right)^{\alpha}f(z)dz$$

$$\leq C\left(\frac{1-s^{2}}{2s}\right)^{1+\alpha}e^{-2^{2k}/4}y^{\alpha}\int_{\left(y^{1/2}-2^{k+1}s^{1/2}\right)^{2}}^{\left(y^{1/2}+2^{k+1}s^{1/2}\right)^{2}}\chi_{D_{s}^{c}}(yz)f(z).$$

Then, by (21), we get that (23) is bounded by a constant times

$$(1 - s^{2})^{1/2} e^{-2^{2k}/4} 2^{k} \frac{1}{4y^{1/2} 2^{k+1} s^{1/2}} \int_{(y^{1/2} - 2^{k+1} s^{1/2})^{2}}^{(y^{1/2} + 2^{k+1} s^{1/2})^{2}} f(z) dz$$

$$\leq C (1 - s^{2})^{1/2} e^{-2^{2k}/4} 2^{k} M_{0} f(y).$$

Thus, summing up for $k \leq k_0$, we get that

(24)
$$H_{\alpha,21}(s,y) \le C_{\alpha} \left(1 - s^2\right)^{1/2} M_0 f(y)$$

holds for the case $\alpha \geq 0$.

Estimate of $H_{\alpha,22}(s,y)$, for the case $-1 < \alpha \le 0$. Let $\beta = -\alpha$. By (13) we have that $H_{\alpha,22}(s,y)$ is bounded by a constant times the sum for $k > k_0$ of the terms

$$\left(\frac{1-s^{2}}{2s}\right)e^{-2^{2k}/4}\int_{B_{k}(y)}\chi_{D_{s}^{c}}(zy)\left(\left(\frac{1-s^{2}}{2s}\right)(zy)^{1/2}\right)^{-\beta}f(z)dz$$

$$\leq \left(\frac{1-s^{2}}{2s}\right)^{1-\beta}e^{-2^{2k}/4}y^{-\beta/2}\left(\frac{1002^{2k}s}{1002^{2k}s}\right)^{1-\beta}\int_{0}^{1002^{2k}s}\chi_{D_{s}^{c}}(zy)z^{-\beta/2}f(y)dz.$$

By (14) the former expression is smaller than or equal to a constant times

$$(1-s^2)^{1-\beta} e^{-2^{2k}/4} 2^{k(1-\beta)} y^{-\beta/2} M_{\beta} (z^{-\beta/2} f(z)) (y)$$
.

Hence, for $-1 < \alpha \le 0$, $H_{\alpha,22}(s,y)$ is bounded by a constant times

(25)
$$(1-s^2)^{1-\beta} y^{-\beta/2} M_{\beta} (z^{-\beta/2} f(z)) (y) .$$

Estimate of $H_{\alpha,22}(s,y)$ for $\alpha \geq 0$. By (12) and (14), $H_{\alpha,22}(s,y)$ is bounded by a constant times the sum for $k > k_0$ of the terms

$$\frac{1-s^{2}}{2s}e^{-2^{2k}/4}\int_{B_{k}(y)}\chi_{D_{s}^{c}}(yz)\left(\frac{1-s^{2}}{2s}(yz)^{1/2}\right)^{\alpha}f(z)dz$$

$$\leq \left(\frac{1-s^{2}}{2s}\right)^{1+\alpha}e^{-2^{2k}/4}y^{\alpha/2}\int_{0}^{1002^{2k}s}z^{\alpha/2}f(z)dz$$

$$\leq \left(\frac{1-s^{2}}{2s}\right)^{1+\alpha}e^{-2^{2k}/4}y^{\alpha/2}\left(1002^{2k}s\right)^{\alpha/2}\int_{0}^{1002^{2k}s}f(z)dz.$$
(26)

Since $y \leq 1002^{2k}s$, we obtain that (26) is bounded by a constant times

$$(1 - s^2)^{1+\alpha} e^{-2^{2k}/4} 2^{2(1+\alpha)k} \frac{1}{1002^{2k}s} \int_0^{1002^{2k}s} f(z) dz$$

$$\leq (1 - s^2)^{1+\alpha} e^{-2^{2k}/4} 2^{2(1+\alpha)k} M_0 f(y) .$$

Thus, $H_{\alpha,22}(s,y)$ is bounded by a constant times

$$\left(1-s^2\right)^{1+\alpha}M_0f\left(y\right),\,$$

when $\alpha > 0$.

A simple computation show that $1 - s^2 \le 4e^{-t/2}$. Then the estimates (17), (19), (22) and (25) obtained for $-1 < \alpha \le 0$, show that (5) holds, and the estimates (17),(19), (24) and (27) obtained for $\alpha \ge 0$, show that (6) holds.

4 Proof of the results

Proof of Theorem 1 Let us consider the case $-1 < \alpha < 0$, and let $\beta = -\alpha$. By part (a) of Lemma 4, see (5), we have

$$W^{\alpha} f(t, y) \le C_{\alpha} \left\{ e^{-t/4} M_0 f(y) + e^{-t(1-\beta)/4} y^{-\beta/2} M_{\beta} \left(z^{-\beta/2} f(z) \right) (y) \right\},\,$$

and from Lemma 3, (3) and (4), we have

(28)
$$y^{-\beta/2} M_{\beta} \left(f(z) z^{-\beta/2} \right) (y)$$

(29)
$$\leq C_{\beta} \left\{ y^{\beta/2} \frac{1}{y} \int_{0}^{y} f(z) z^{-\beta/2} dz + y^{-\beta/2} M_{0} \left(f(z) z^{\beta/2} \right) (y) + M_{0} f(y) \right\},$$

thus, $W^{\alpha,*}f(y)$ is smaller than or equal to a constant times

$$y^{\beta/2}M_0\left(f(z)z^{-\beta/2}\right)(y) + y^{-\beta/2}M_0\left(f(z)z^{\beta/2}\right)(y) + M_0f(y).$$

The hypothesis that $2/(2+\alpha) and <math>p > 1$ for $-1 < \alpha < 0$ is equivalent to $-1 < -p\beta/2 < p\beta/2 < p-1$ and p > 1. This shows that the weights $y^{-p\beta/2}$ and $y^{p\beta/2}$ belong to the Muckenhoupt class A_p and therefore

$$\int_{0}^{\infty} \left(y^{\beta/2} M_{0} \left(f(z) z^{-\beta/2} \right) (y) \right)^{p} dy \leq C_{\alpha,p} \int_{0}^{\infty} f(y)^{p} dy,
\int_{0}^{\infty} \left(y^{-\beta/2} M_{0} \left(f(z) z^{\beta/2} \right) (y) \right)^{p} dy \leq C_{\alpha,p} \int_{0}^{\infty} f(y)^{p} dy,
\text{and} \int_{0}^{\infty} M_{0} f(y)^{p} dy \leq C_{p} \int_{0}^{\infty} f(y)^{p} dy,$$

which proves the theorem for $-1 < \alpha < 0$.

Let us consider the case $\alpha \geq 0$. By Lemma 2 part (b), inequality (6),

$$W^{\alpha} f(s, y) \le C_{\alpha} e^{-t/4} M_0 f(y),$$

thus $W^{\alpha,*}f(y) \leq C_{\alpha}M_{0}f(y)$, and

$$\int_{0}^{\infty} (W^{\alpha,*} f(y))^{p} dy \le C_{\alpha} \int_{0}^{\infty} M_{0} (f(y))^{p} dy \le C_{\alpha,p} \int_{0}^{\infty} f(y)^{p} dy,$$

which proves the theorem for $\alpha \geq 0$.

Remark 1 A second proof of Theorem 1 can be given by interpolation of the results obtained for the end points of N_{α} in Theorem 2. For the results on interpolation needed, see [2], page 59, Theorem (3.4.6).

Proof of Theorem 2.

Proof of part (a). If $-1 < \alpha < 0$ it follows that $2/(-\alpha) > 1$, and the upper end point of N_{α} is equal to $2/(-\alpha)$. For a fixed s, 0 < s < 1, consider the points y and z satisfying $\left(\frac{1-s^2}{2s}\right)y \le 1$ and $\left(\frac{1-s^2}{2s}\right)z \le 1$, then, by (7), we obtain

$$R_{\alpha}(y,z,s) \ge C_{\alpha} \frac{1}{2} \frac{1-s^2}{2s} e^{-\frac{1+s^2}{1-s^2}} \left(\frac{1-s^2}{2s} (yz)^{1/2}\right)^{\alpha} \ge C_{\alpha,s} y^{\alpha/2} z^{\alpha/2} .$$

Thus, denoting $a = \frac{2s}{1-s^2}$, we get that

$$W^{\alpha}\left(\chi_{(0,a)}\right)(s,y) \ge C_{\alpha,s} y^{\alpha/2} \int_{0}^{a} z^{\alpha/2} dz = C_{\alpha,s} y^{\alpha/2},$$

holds for every $0 \le y \le a$. Since

$$\int_0^a (y^{\alpha/2})^{2/(-\alpha)} dy = \int_0^a y^{-1} dy = \infty,$$

it follows that the operator $W^{\alpha,*}f$ is not of strong type $(2/(-\alpha),2/(-\alpha))$. However, the operator $W^{\alpha,*}f$ is of weak type. In fact, by (3) in Lemma 1 and (5 in Lemma 2, it will be enough to show that the three terms of

$$y^{\beta/2} M_0 \left(f(z) z^{-\beta/2} \right) (y) + sup_{y \le 2h} \left(\frac{y^{-\beta/2}}{(2h)^{1-\beta}} \int_y^{y+h} f(z) z^{-\beta/2} dz \right) + M_0 f(y)$$

satisfy the weak type condition. Since $-1 < \alpha < 0$ implies that $-1 < 1 < 2/(-\alpha) - 1$, then the weight y belongs to $A_{2/(-\alpha)}$. Thus, the first term satisfies

$$\int_{0}^{\infty} \left(y^{\beta/2} M_{0} \left(f\left(z \right) z^{-\beta/2} \right) (y) \right)^{2/(-\alpha)} dy = \int_{0}^{\infty} \left(M_{0} \left(f\left(z \right) z^{-\beta/2} \right) (y) \right)^{2/(-\alpha)} y dy \\
\leq C_{\alpha} \int_{0}^{\infty} \left(f\left(y \right) y^{-\beta/2} \right)^{2/(-\alpha)} y dy = C_{\alpha} \int_{0}^{\infty} f\left(y \right)^{2/(-\alpha)} dy.$$

This shows that the first term is of strong type and therefore of weak type $(2/(-\alpha), 2/(-\alpha))$. The third term is obviously of strong and weak type $(2/(-\alpha), 2/(-\alpha))$. For the second term if we denote $2/(-\alpha)$ by p, then $p' = 2/(2+\alpha)$. By Hölder's inequality, we obtain

$$\frac{1}{(2h)^{1-\beta}} \int_{y}^{y+h} f(z) z^{-\beta/2} dz \le \frac{1}{(2h)^{1-\beta}} \|f\|_{L^{p}(y,y+h)} \|z^{\alpha/2}\|_{L^{p'}(y,y+h)}.$$

In order to estimate $||z^{\alpha/2}||_{L^{p'}(y,y+h)}$ we observe that

$$\left(\alpha/2\right)2/\left(2+\alpha\right)=2\left(1+\alpha\right)/\left(2+\alpha\right)-1>-1\ \ \mathrm{and}\ \ \left(2\left(1+\alpha\right)/\left(2+\alpha\right)\right)\left(2+\alpha\right)/2=1+\alpha$$

hold. Then $||z^{\alpha/2}||_{L^{p'}(y,y+h)} \leq C_{\alpha} (y+h)^{1+\alpha}$. Thus, since $y \leq 2h$, we get

$$\frac{1}{(2h)^{1+\alpha}} \int_{y}^{y+h} f(z) z^{\alpha/2} dz \le C_{\alpha} \left(\frac{y+h}{h} \right)^{1+\alpha} \|f\|_{L^{p}(y,y+h)} \le C_{\alpha} \|f\|_{L^{p}(0,\infty)}.$$

Multiplying by $y^{-\beta/2}$ and taking the supremum in $h \geq y/2$, we obtain

$$\sup_{h \ge y/2} \left(y^{-\beta/2} \frac{1}{(2h)^{1-\beta}} \int_{y}^{y+h} f(z) z^{-\beta/2} dz \right) \le C_{\alpha} y^{-\beta/2} \|f\|_{L^{p}(0,\infty)}.$$

From this inequality the weak type (p, p) for $p = 2/(-\alpha)$ follows readily.

Proof of part (b). If $\alpha \geq 0$, the upper end point of N_{α} is equal to ∞ and, by (6), we have $W^{\alpha,*}f(y) \leq C_{\alpha}M_{0}f(y)$. Therefore, the operator $W^{\alpha,*}f$ is of strong type (∞,∞) .

Proof of part (c). If the lower end point of N_{α} is greater than 1, then it coincides with $2/(2+\alpha)$. This implies that $\alpha<0$. If for a given $a=\frac{2s}{1-s^2}$, as before, the integral $\int_0^a f(z)\,z^{\alpha/2}dz$ is finite for every $f(z)\in L^{2/(2+\alpha)}\left(0,a\right)$, then since $\left(2/\left(2+\alpha\right)\right)'=2/\left(-\alpha\right)$, by uniform boundedness, it follows that $z^{\alpha/2}\in L^{2/(-\alpha)}\left(0,a\right)$. This is a contradiction since $z^{(\alpha/2)2/(-\alpha)}=z^{-1}$. Then, there exists $f\in L^{2/(2+\alpha)}\left(0,a\right)$ such that $\int_0^a f(z)\,z^{\alpha/2}dz=\infty$. This shows that for the given f, $\int_0^a R\left(s,y,z\right)f\left(z\right)dz\geq C_{\alpha,s}y^{\alpha/2}\int_0^a z^{\alpha/2}f\left(z\right)dz=\infty$, showing that $W^{\alpha,*}f\left(y\right)=\infty$ for every $y\leq a$. This is telling us that the operator $W^{\alpha,*}$ cannot be of weak type at the lower end point $2/\left(2+\alpha\right)>1$. Let $-1<\alpha<0$ and $\beta=-\alpha$. By (5), (3) and (4), we have

$$(30) W^{\alpha,*} f(y) \leq C_{\alpha} \left\{ M_{0} f(y) + y^{\beta/2} \frac{1}{y} \int_{0}^{y} f(z) z^{-\beta/2} dz + y^{-\beta/2} M_{0} \left(f(z) z^{\beta/2} \right) (y) \right\}.$$

It is easy to see that the inequalities

$$1 < 2/(2-\beta)$$
 and $-1 < -(\beta/2)2/(2-\beta) < 2/(2-\beta) - 1$

hold. These inequalities imply that the weight $y^{-(\beta/2)2/(2-\beta)}$ belong to $A_{2/(2-\beta)}$. Therefore, the operators

$$M_0 f(y)$$
 and $y^{-\beta/2} M_0 \left(f(z) z^{\beta/2} \right) (y)$

are of strong type $(2/(2-\beta), 2/(2-\beta))$. We have not considered yet the second term of (30). Let E be a measurable set contained in $(0, \infty)$. Then,

$$\int_{0}^{y} \chi_{E}(z) z^{-\beta/2} dz \leq \int_{0}^{\infty} \chi_{E}(z) z^{-\beta/2} dz \leq \int_{0}^{|E|} z^{-\beta/2} dz = \frac{1}{1 - \beta/2} |E|^{1-\beta/2}$$
$$= C_{\beta} \left(\int_{0}^{\infty} \chi_{E}(z) dz \right)^{(2-\beta)/2}.$$

In consequence,

$$y^{\beta/2} \frac{1}{y} \int_0^y \chi_E(z) z^{-\beta/2} dz \le C_\beta y^{\beta/2} \frac{1}{y} \left(\int_0^\infty \chi_E(z) dz \right)^{(2-\beta)/2}.$$

From this inequality the restricted weak type $\left(\frac{2}{2-\beta}, \frac{2}{2-\beta}\right)$ of the second term (30) is readily obtained.

Proof of part (d). Let us show that if the lower end point of N_{α} is equal to 1, then the operator $W^{\alpha,*}f$ cannot be of strong type (1,1). By (7), we have

$$\chi_{D_s}\left(yz\right)R_{\alpha}\left(y,z,s\right) \geq c_{\alpha}\left(\frac{1-s^2}{2s}\right)^{1/2}e^{-\frac{1}{4s}\left(y^{1/2}-z^{1/2}\right)^2}e^{-\frac{s}{4}\left(y^{1/2}-z^{1/2}\right)^2}e^{-s(yz)^{1/2}}\chi_{D_s}\left(yz\right)\frac{1}{\left(yz\right)^{1/4}}.$$

Take $0 < \varepsilon \le 1$. Let us assume that $1 < z \le 1 + \varepsilon$, $1 + 2\varepsilon \le y \le 2$, and $s = (y - 1)^2/4$. Then it follows that $s \le 1/4$, $\left(\frac{1-s^2}{2s}\right) \ge 1$, and $\left(\frac{1-s^2}{2s}\right)^{1/2}(yz)^{1/4} \ge 1$. Thus $\chi_{D_s}(yz) = 1$, and since

$$\begin{split} \frac{1}{4s} \left(y^{1/2} - z^{1/2} \right)^2 &= \frac{\left(y^{1/2} - z^{1/2} \right)^2}{\left(y - 1 \right)^2} \leq \left(\frac{(y - z)}{2 \left(y - 1 \right)} \right)^2 \leq \left(\frac{1}{2} + \frac{|1 - z|}{2 \left(y - 1 \right)} \right)^2 \\ &\leq \left(\frac{1}{2} + \frac{\varepsilon}{4\varepsilon} \right)^2 \leq 1, \end{split}$$

we get that $R_{\alpha}(y,z,s) \geq \frac{C_{\alpha}}{(y-1)}$ holds. Then

$$W^{\alpha,*}\left(\chi_{(1,1+\varepsilon)}\right)(y) \ge \frac{C_{\alpha}}{(y-1)} \int_0^{\infty} \chi_{(1,1+\varepsilon)}(z) \, dz = C_{\alpha} \frac{\varepsilon}{(y-1)},$$

holds for $1+2\varepsilon \leq y \leq 2$. If the operator $W^{\alpha,*}$ were of strong type (1,1) we would have that

(31)
$$\int_{0}^{\infty} W^{\alpha,*} \left(\chi_{(1,1+\varepsilon)} \right) (y) \, dy \le A_{\alpha} \int_{0}^{\infty} \chi_{(1,1+\varepsilon)} (y) \, dy = A_{\alpha} \varepsilon$$

holds for a finite constant A_{α} depending on α only. On the other hand, we have

(32)
$$\int_{1+2\varepsilon}^{2} W^{\alpha,*} \left(\chi_{(1,1+\varepsilon)} \right) (y) \, dy \ge C_{\alpha} \int_{1+2\varepsilon}^{2} \frac{\varepsilon}{y-1} dy = C_{\alpha} \varepsilon \log \left(\frac{1}{2\varepsilon} \right).$$

In consequence, from (31) and (32), it follows that

$$C_{\alpha}\varepsilon \log\left(\frac{1}{2\varepsilon}\right) \leq A_{\alpha}\varepsilon \text{ or also } C_{\alpha,\varepsilon}\log\left(\frac{1}{2\varepsilon}\right) \leq A_{\alpha}.$$

This is a contradiction since the left hand side of the last inequality above tends to ∞ when ε tends to 0, proving that there is no strong type (1,1) for the operator $W^{\alpha,*}f$. However as we are going to prove, the operator is of weak type (1,1). Since $2/(2+\alpha) \le 1$, it follows that $\alpha \ge 0$. Then, by Lemma 2, (6), we have that $W^{\alpha,*}f(y) \le C_{\alpha}M_0f(y)$ which implies the weak type (1,1) for the operator $W^{\alpha,*}f(y)$.

References

[1] Erdélyi, Arthur; Magnus, Wilhelm; Oberhettinger, Fritz; Tricomi, Francesco G. Higher transcendental functions. Vol. II. Based, in part, on notes left by Harry Bateman. McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953.

- [2] M. de Guzmán, Real Variable Methods in Fourier Analysis, North-Holland Mathematics Studies 46. North-Holland Publishing Company, 1981.
- [3] B. Muckenhoupt, Mean convergence of Hermite and Laguerre expansions, Trans. Amer. Math. Soc. 139 (1969), 231-242.
- [4] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Soc., 165, 1972, 207-226.
- [5] E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Annals of Mathematical Studies 63. Princeton University Press, 1970.
- [6] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series 30. Princeton University Press, 1970.
- [7] K. Stempak, Heat-diffusion and Poisson integrals for Laguerre expansions, Tohoku Math. J. 46 (1994), 83-104.
- [8] G. Szego, Orthogonal Polynomials, Amer. Math. Soc. Colloquium Publication XXIII, American Mathematical Society, 1939.
- [9] S. Thangavelu, Lectures on Hermite and Laguerre Expansions, Mathematical Notes 24. Princeton University Press, 1993.

R. Macías rmacias@ceride.gov.ar IMAL-FIQ CONICET - Universidad Nacional del Litoral Güemes 3450, 3000 Santa Fe, Argentina

C. Segovia segovia@iamba.edu.ar Intituto Argentino de Matemática (IAM) - CONICET. Saavedra 15, (1083) Buenos Aires, Argentina

J.L. Torrea joseluis.torrea@uam.es
DEPARTAMENTO DE MATEMÁTICAS
FACULTAD DE CIENCIAS
UNIVERSIDAD AUTÓNOMA DE MADRID
28049 MADRID, SPAIN