GRASSMANNIANS OF A FINITE ALGEBRA IN THE STRONG OPERATOR TOPOLOGY *

Esteban Andruchow and Lázaro Recht

Instituto de Ciencias, UNGS, Los Polvorines, Argentina and Depto. de Matemáticas P Y A, USB, Caracas, Venezuela

Abstract

If \mathcal{M} is a type II₁ von Neumann algebra with a faithful trace τ , we consider the set \mathcal{P} of selfadjoint projections of \mathcal{M} as a subset of the Hilbert space $\mathcal{H}=L^2(\mathcal{M},\tau)$. We prove that though it is not a differentiable submanifold, the geodesics of the natural Levi-Civita connection given by the trace have minimal length. More precisely: the curves of the form $\gamma(t)=e^{itx}pe^{-itx}$ with $x^*=x$, pxp=(1-p)x(1-p)=0 have minimal length when measured in the Hilbert space norm of \mathcal{H} , provided that the operator norm $\|x\|$ is less or equal than $\pi/2$. Moreover, any two projections which are unitary equivalent are joined by at least one such minimal geodesic, and only unitary equivalent projections can be joined by a smooth curve. Finally, we prove that these geodesics have also minimal length if one measures them with the Schatten k-norms of τ , $\|x\|_k = \tau((x^*x)^{k/2})^{1/k}$, for all $k \in \mathbb{R}$, $k \geq 0$. We also characterize curves of unitaries which have minimal length with these k-norms.

Keywords: curves of projections, curves of unitaries.

1 Preliminaries

Let \mathcal{M} be type II₁ von Neumann algebra with faithful normal trace τ . Denote by $\mathcal{H} = L^2(\mathcal{M}, \tau)$ the Hilbert space obtained by completion of \mathcal{M} with the inner product given by τ : $\langle m', m \rangle = \tau(m^*m')$, with norm $||m||_2 = \tau(m^*m)^{1/2}$. Denote by \mathcal{P} the set of selfadjoint projections of \mathcal{M} , and by $U_{\mathcal{M}}$ the unitary group of \mathcal{M} . This note studies the geometric structure of \mathcal{P} in the topology induced by τ . That is, we regard \mathcal{P} as a subset of \mathcal{H} (identifying \mathcal{M} with its image in the standard representation in \mathcal{H}). It is well known that this topology coincides in \mathcal{P} with the strong and weak operator topologies. We consider the following problems

1. Local (smooth?) structure of \mathcal{P} .

^{*2000} Mathematics Subject Classification: 46L10, 46L51, 58B10, 58B20.

2. Existence and uniqueness of short curves (geodesics) joining elements of \mathcal{P} . To measure lengths of (piecewise smooth) curves we use the metric of \mathcal{H} :

$$length(\gamma) = \int_0^1 ||\dot{\gamma}||_2 dt,$$

where γ is parametrized in the interval [0,1].

Concerning the local structure of \mathcal{P} , first we prove that a curve in \mathcal{P} which is differentiable (as a map on \mathcal{H}) has constant trace, i.e. remains inside a unitary orbit in \mathcal{P} . If $p \in \mathcal{P}$, denote by $\mathcal{P}_p = \{upu^* : u \in U_{\mathcal{M}}\}$. We show that \mathcal{P}_p is not a differentiable submanifold of \mathcal{H} . Nevertheless, we introduce a riemannian metric and its corresponding Levi-Civita connection in \mathcal{P} . Namely, the trace inner product given by τ in every tangent space. This connection looks formally identical to the reductive connection of \mathcal{P} in the norm topology (see [4]).

With respect to the second question, we prove that the geodesics of the Levi-Civita connection are short curves for the metric. More precisely: two given points p, q of \mathcal{P} , lying in the same unitary orbit, are joined by a minimizing geodesic, which is a curve of the form

$$\gamma(t) = e^{tx} p e^{-tx}, \quad t \in [0, 1]$$

with $x^* = -x$ codiagonal with respect to p and $||x|| \le \pi/2$. If $||x|| < \pi/2$ (a fact equivalent to ||p - q|| < 1), then the geodesic is unique.

Moreover, we prove that these curves have also minimal length, if one measures them using the k-norm, $\|x\|_k = \tau((x^*x)^{k/2})^{1/k}$, for $k \in \mathbb{R}$, $k \geq 2$. This strengthens a result in [5], where minimality was proved among so called "non wandering curves", and for k an even integer. Non wandering curves are curves of the form $e^{ix(t)}pe^{-ix(t)}$, were x(t) is a piecewise (norm) smooth curve of selfadjoint elements with $\|x(t)\| < \pi/2$. To illustrate this difference, our result here shows that γ remains minimal also among strongly differentiable curves with unbounded velocity vectors(=selfadjoint operators affiliated to \mathcal{M}).

In order to prove this, we use a stronger fact. Namely, that curves of the form $\alpha(t) = e^{itx}u$ with u unitary and x selfadjoint have minimal length among (piecewise C^1) curves of unitaries when measured with the k-norms, provided that $||x|| \le \pi$. For k = 2 this was proved in [1]. For k > 2 it is proved here.

The contents of the paper are as follows. In section 2 we establish basic facts and notation. In section 3 we introduce de Levi-Civita connection of \mathcal{P} , and prove that any two points in a unitary orbit in \mathcal{P} are joined by a minimizing geodesic (in the 2-norm). In section 4 we prove that $\mathcal{P} \subset \mathcal{H}$ is not a differentiable submanifold, but that the geodesic distance and the 2-metric of \mathcal{H} are equivalent in \mathcal{P} . In section 5 we prove the minimality result for curves of unitaries in the k-norms. As a consequence, we obtain the minimality result in \mathcal{P} for these norms.

2 Unitary orbits

In the norm topology, the connected components of the set \mathcal{P} of projections of a von Neumann algebra are precisely the unitary orbits. For example, if $\mathcal{M}=\mathcal{B}(H)$, they are parametrized by the rank and corank of the projections. Since algebras of type Π_1 have continuous dimension, it is natural that nonequivalent projections can be joined by a strong operator continuous curve. For example, let $\mathcal{M}=L^{\infty}(0,1)\otimes\mathcal{M}_0$ with \mathcal{M}_0 also of type Π_1 and trace τ_0 . Put τ in \mathcal{M} given by $\tau(f\otimes x)=(\int_0^1 f(s)ds)\tau_0(x)$. Then $\delta(t)=\chi_{(0,t)}\otimes 1_{\mathcal{M}_0}$ is a continuous curve of projections joining 0 and 1. Note that δ , regarded as a curve in \mathcal{H} , with the 2-norm $\|\cdot\|_2$, is non differentiable. We show now that if a curve of projections is differentiable (as a curve in \mathcal{H}), then it lies inside a unitary orbit.

Let us fix some notation. If $\xi \in \mathcal{H}$ and $a \in m$, we denote by $a\xi$ (resp. ξa) the vector $L_a\xi$ (resp. $R_a\xi$), where L_a (resp. $R_a\xi$) is the representation of \mathcal{M} as left (resp. right) multiplication operator in $\mathcal{H} = L^2(\mathcal{M}, \tau)$. As is usual, denote by J the completion of the semilinear isometric operator $\mathcal{M} \ni x \mapsto x^* \in \mathcal{M}$. Note that the trace τ can be interpreted as $\tau(a) = \langle a, 1 \rangle$, where 1 here is regarded as a (ciclic) vector in \mathcal{H} . Then τ can be extended to a continuous functional in \mathcal{H} , which we still denote by τ . Note that $\tau(a\xi) = \tau(\xi a)$. If \mathcal{M} is not a factor, let Tr be the center valued trace. Since this map is normal, it can be extended to \mathcal{H} , and we denote also by Tr its extension.

Proposition 2.1 Let γ be a curve in \mathcal{P} , which is differentiable as a curve in \mathcal{H} . Then γ stays within a unitary orbit.

Proof. Note that since the product is differentiable, the fact $\gamma(t)^2 = \gamma(t)$ implies that

$$\dot{\gamma}\gamma + \gamma\dot{\gamma} = \dot{\gamma},\tag{2.1}$$

and therefore, multiplying by γ on both sides, $\gamma\dot{\gamma}\gamma=0$. Then $Tr(\gamma\dot{\gamma}\gamma)=Tr(\dot{\gamma}\dot{\gamma})=Tr(\dot{\gamma}\gamma)=0$. Taking trace in (2.1), one obtains $Tr(\dot{\gamma})=0$, i.e. $Tr(\gamma)$ is constant.

As in the proof above, the velocity vectors of curves in \mathcal{P} at p are vectors ξ satisfying $\xi p + p\xi = \xi$ and $J\xi = \xi$, the latter because $\mathcal{P} \subset \mathcal{M}_h$. We define

$$(T\mathcal{P})_p = \{ \xi \in \mathcal{H} : J\xi = \xi \text{ and } \xi p + p\xi = \xi \}. \tag{2.2}$$

Then $(T\mathcal{P})_p = \{\xi \in \mathcal{H} : J\xi = \xi, (p + JpJ)\xi = \xi\}$. Note that $(T\mathcal{P})_p$ is closed in \mathcal{H} .

If $\xi \in \mathcal{H}$, denote by L_{ξ} the closure of the densely defined linear (possibly unbounded, affiliated to \mathcal{M}) operator given by $L_{\xi}x = \xi x$, if $x \in \mathcal{M} \subset \mathcal{H}$. If $J\xi = \xi$, then L_{ξ} is selfadjoint [11].

Proposition 2.2 Any element $\xi \in (T\mathcal{P})_p$ is the velocity of a C^1 curve $\alpha(t) \in \mathcal{P}$: $\alpha(0) = p$ and $\dot{\alpha}(0) = \xi$. If $\xi = x \in \mathcal{M}$, the curve α can be chosen C^{∞} .

Proof. Let $\nu = i(p\xi - \xi p)$. Then clearly $J\nu = \nu$. Put $\alpha(t) = e^{itL_{\nu}}pe^{-itL_{\nu}}$. This curve is continuous and takes values in \mathcal{P} . Moreover, it can be differentiated in \mathcal{H} ,

$$\dot{\alpha}(t) = i\nu\alpha(t) - i\alpha(t)\nu,$$

which is continuous in \mathcal{H} . At t=0 one gets

$$\dot{\alpha}(0) = i\nu p - ip\nu = (\xi p - p\xi)p - p(\xi p - p\xi) = \xi p + p\xi = \xi,$$

because $\xi \in (T\mathcal{P})_p$ implies that $p\xi p = 0$. Note that if $\xi = x \in \mathcal{M}$, then α is C^{∞} (the obstruction to further regularity of α is that the powers of ν may lie outside $L^2(\mathcal{M}, \tau)$).

Let us finish this section by stating these basic facts. Certainly they are well known.

Proposition 2.3 Both \mathcal{P} and the unitary orbit $\mathcal{P}_p = \{upu^* : u \in U_{\mathcal{M}}\}$ are closed in \mathcal{H} .

Proof. Let p_n be a sequence in \mathcal{P} converging to ξ in \mathcal{H} . Then, for any $\eta \in \mathcal{H}$, $p_n \eta$ is a Cauchy sequence in \mathcal{H} . Indeed, if $\eta = x \in \mathcal{M} \subset \mathcal{H}$,

$$\|p_n x - p_k x\|_2^2 = \tau(x^*(p_n - p_k)^2 x) = \tau((p_n - p_k)x^* x (p_n - p_k)) \le \|x\|^2 \tau((p_n - p_k)^2) = \|x\|^2 \|p_n - p_k\|_2^2.$$

In general, there exists $x \in \mathcal{M}$ such that $||x - \eta||_2 < \epsilon/2$. And therefore

$$\|(p_n-p_k)\eta\|_2 \leq \|(p_n-p_k)x\|_2 + \|(p_n-p_k)(\eta-x)\|_2 \leq \|(p_n-p_k)x\|_2 + 2\|\eta-x\|_2 < \|(p_n-p_k)x\|_2 + \epsilon.$$

Therefore p_n converges strongly to a linear operator in \mathcal{H} , which is bounded by the uniform boundedness principle, i.e. $p_n \to a \in \mathcal{M}$. By strong continuity of the product and the adjoint (\mathcal{M} is finite), clearly $a^2 = a^* = a$.

Let $u_n \in U_{\mathcal{M}}$ such that $u_n p u_n^*$ is convergent in \mathcal{H} , by the above argument, to a projection $q \in \mathcal{P}$. Since the center valued trace Tr of \mathcal{M} is strongly continuous, $Tr(p) = Tr(u_n p u_n^*) \to Tr(q)$, and therefore p and q are unitarily equivalent.

3 Levi-Civita connection of the trace

We shall treat \mathcal{P} as if it were a submanifold of \mathcal{H} (which we shall see later that it is not). We endow each tangent space with the ambient metric (inner product) given by the trace τ : if $\xi, \eta \in (T\mathcal{P})_p$, $\langle \xi, \eta \rangle_p = \langle \xi, \eta \rangle$, which is real valued because $J\xi = \xi$ and $J\eta = \eta$. Since we consider \mathcal{P} with the flat euclidean metric at each point, the Levi-Civita connection consists of projecting orthogonally onto $T\mathcal{P}$ the usual derivative in \mathcal{H} of a field. That is, if X(t) is a C^1 , \mathcal{H} valued map, which is tangent along a curve γ in \mathcal{P} , i.e. $X(t) \in (T\mathcal{P})_{\gamma(t)}$, then

$$\frac{DX}{dt} = \Pi_{\gamma}(\dot{X}).$$

The projection $\Pi_p: \mathcal{H} \to (T\mathcal{P})_p$ can be computed explicitely:

$$\Pi_p(\nu) = \frac{1}{2}(1-p)(\nu+J\nu)p + \frac{1}{2}p(\nu+J\nu)(1-p).$$

Indeed, note that if $\nu \in (T\mathcal{P})_p$, $J\nu = \nu$ and then $\Pi_p(\nu) = \nu$, and clearly Π_p takes values in $(T\mathcal{P})_p$. It remains to verify that Π_p is orthogonal, which is straightforward. In particular, a curve γ is a geodesic if it satisfies

$$0 = \Pi_{\gamma}(\ddot{\gamma}) = (1 - \gamma)\ddot{\gamma}\gamma + \gamma\ddot{\gamma}(1 - \gamma). \tag{3.3}$$

If $\xi \in \mathcal{H}$ with $J\xi = \xi$ and $p\xi p = 0 = (1-p)\xi(1-p)$ then $\gamma(t) = e^{itL_{\xi}}pe^{-itL_{\xi}}$ is a C² geodesic of \mathcal{P} , provided that $\xi^2 \in L^2(\mathcal{M}, \tau)$. This is to ensure that $\ddot{\gamma}$ remains in $L^2(\mathcal{M}, \tau)$. Indeed,

$$\ddot{\gamma} = e^{itL_\xi}(-\xi^2 p + 2\xi p\xi - p\xi^2)e^{-itL_\xi},$$

and therefore (3.3) yields

$$e^{itL_{\xi}} \{ p(-\xi^{2}p + 2\xi p\xi - p\xi^{2})(1-p) + (1-p)(-\xi^{2}p + 2\xi p\xi - p\xi^{2})p \} e^{-itL_{\xi}}$$

$$= e^{itL_{\xi}} \{ 2p\xi p\xi(1-p) - p\xi^{2}(1-p) - (1-p)\xi^{2}p + 2(1-p)\xi p\xi p \} e^{-itL_{\xi}}.$$

Note that $p\xi p = 0$ and ξ^2 commutes with p, so that the expression above equals zero. If $\alpha(t)$, $t \in [0,1]$ is a C^1 curve in \mathcal{P} , we measure its length as follows:

$$length(\alpha) = \int_0^1 \|\dot{\alpha}\|_2 dt.$$

and define the rectifiable metric accordingly

$$d(p,q) = \inf\{length(\alpha) : \alpha \text{ is piecewise smooth and joins } p \text{ and } q\}, p,q \in \mathcal{P}.$$
 (3.4)

Note that in fact the metric d is finite if and only if p and q are unitarily equivalent. Let us state the following result, which is a consequence of Th. 3.3 in [5]:

Theorem 3.1 (Th.3.3, [5]) If γ is a C^2 curve in \mathcal{P}_p , which achieves the distance between its endpoints, then it is a geodesic of the above connection.

Theorem 3.3 of [5] was proved in more generality, for the metric induced by the k-norms (k even), but for the class of smooth (=C $^{\infty}$) curves. However, the proof remains valid for C 2 curves, with unbounded (outside \mathcal{M}) velocity.

There is an alternate description for \mathcal{P} , as (selfadjoint) symmetries or reflections. Namely

$$\mathcal{E} = \{ \epsilon \in \mathcal{M} : \epsilon^2 = 1, \epsilon^* = \epsilon \}.$$

One passes from projections to symmetries by means of the affine, one to one map $p \mapsto \epsilon = 2p-1$. The Riemanian metric and the Levi-Civita connection can be translated to \mathcal{E} , the above map is an isometric isomorphism with a correction factor 2. Geodesics have a particular nice description in this setting. The velocity vector ξ of a geodesic γ of \mathcal{P} starting at p, is codiagonal with respect to p, and therefore anticommutes with $\epsilon = 2p-1$: $\xi \epsilon = -\epsilon \xi$. Therefore the corresponding geodesic $\rho = 2\gamma - 1$ of \mathcal{E} is of the form

$$\rho(t) = e^{2itL_{\xi}} \epsilon = \epsilon e^{-2itL_{\xi}}.$$
(3.5)

Theorem 3.2 Let $p, q \in \mathcal{P}$ such that ||p - q|| < 1. Then there exists a unique C^2 curve $\gamma(t)$, $t \in [0, 1]$, with $\gamma(0) = p$ and $\gamma(1) = q$, such that

$$length(\gamma) = d(p, q).$$

Moreover, this curve is a C^{∞} geodesic.

Proof. It is well known([3],[8],[4]) that ||p-q|| < 1 is equivalent to the existence of $x \in \mathcal{M}$ such that $x^* = x$, $||x|| < \pi/2$, x is codiagonal with respect to p and $e^{ix}pe^{-ix} = q$. Then $\gamma(t) = e^{itx}pe^{-itx}$ is a C^{∞} geodesic of \mathcal{P} with $\gamma(0) = p$ and $\gamma(1) = q$. Let us prove that it has minimal length. Denote by $\rho(t) = 2\gamma(t) - 1$ the corresponding geodesic of \mathcal{E} . Note that the velocity vector of ρ satisfies $||2x|| < \pi$. In [1] it was proven that a curve of the form $e^{itz}u$ with u unitary and z selfadjoint such that $||z|| < \pi$, is the shortest curve of unitaries of \mathcal{M} joining u and u0, when the length is measured with the ||u|| = 1 norm. It follows that if u0 is a curve in u0 joining u1 and u2, the curve u2 is longer that u2. Therefore

$$length(\gamma) = \frac{1}{2} length(\rho) \leq \frac{1}{2} length(2\alpha - 1) = length(\alpha).$$

Clearly this curve γ is unique.

In other words, two projections such that $\|p-q\|<1$, are joined by a unique C^{∞} geodesic of the $\|\ \|_2$ metric, which is minimal with respect to this metric. This strenghtens partially a result in [5], where it was shown that these geodesics are minimal for all the k-norms, but only among what they call there "non wandering curves". In section 5 we show that this results also holds for the k-norms, with real k.

It remains to examine the case ||p-q|| = 1. The following result settles this case. We use ideas and facts from [12] and [3].

Theorem 3.3 If ||p-q|| = 1, then there exists a C^{∞} minimizing geodesic in \mathcal{P}_p joining p and q, with length at most $\pi/2$.

Proof. In Prop. 5 of [3] it is shown that if p and q are projections in a von Neumann algebra, with ||p-q|| = 1 and $rank(p \wedge (1-q)) = rank(q \wedge (1-p))$ then there exists a smooth curve of projections in \mathcal{H} joining p and q, of length $\pi/2$. The length is measured with respect to the rectifiable metric with

the usual norm. First note that in a II₁ von Neumann algebra, $rank(p \wedge (1-q)) = rank(q \wedge (1-p))$. This fact is probably well known ([12]). We include a proof. Let Tr be the center valued trace of \mathcal{M} . Recall that $p \wedge (1-q)$ is the strong limit of the powers $(p(1-q))^n$. Since Tr is strongly continuous, to prove the claim it suffices to show that for all $n \geq 1$,

$$Tr((p - pq)^n) = Tr((q - qp)^n).$$

In the span of $(p-pq)^n$, the monomial

$$p^{i_1}(pq)^{j_1}p^{i_2}(pq)^{j_2}\dots(pq)^{j_k}p^{j_{k+1}}=(pq)^{j_1+\dots+j_k}p^{j_{k+1}},$$

can be paired up with the corresponding monomial in the span of $(q-qp)^n$,

$$q^{i_1}(qp)^{j_1}q^{i_2}(qp)^{j_2}\dots(qp)^{j_k}q^{j_{k+1}}=(qp)^{j_1+\dots+j_k}q^{j_{k+1}}.$$

Clearly, both monomials have the same trace. In Prop. 5 of [3], Brown uses a canonic representation ρ of the C*-algebra generated by p and q to find a curve joining them. This representation sends p and q to (respectively)

$$\rho(p) = 0 \oplus \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) \oplus \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) \oplus 1$$

and

$$\rho(q) = 0 \oplus \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) \oplus \left(\begin{array}{cc} \cos^2 \varphi & \cos \varphi \sin \varphi \\ \cos \varphi \sin \varphi & \sin^2 \varphi \end{array} \right) \oplus 1,$$

where φ is a measurable function on certain measure space X, with $0 \le \varphi(x) \le \pi/2$. A straightforward computation shows that

$$\exp\left(\left(\begin{array}{cc} 0 & -\varphi \\ \varphi & 0 \end{array}\right)\right)\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right)\exp\left(\left(\begin{array}{cc} 0 & \varphi \\ -\varphi & 0 \end{array}\right)\right)=\left(\begin{array}{cc} \cos^2\varphi & \cos\varphi\sin\varphi \\ \cos\varphi\sin\varphi & \sin^2\varphi \end{array}\right)$$

(here exp denotes the usual exponential). In particular, also

$$exp\left(\left(\begin{array}{cc} 0 & -\pi/2 \\ \pi/2 & 0 \end{array}\right)\right)\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right)exp\left(\left(\begin{array}{cc} 0 & \pi/2 \\ -\pi/2 & 0 \end{array}\right)\right)=\left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right).$$

Therefore, if we denote

$$z = 0 \oplus \left(\begin{array}{cc} 0 & -\pi/2 \\ \pi/2 & 0 \end{array} \right) \oplus \left(\begin{array}{cc} 0 & -\varphi \\ \varphi & 0 \end{array} \right) \oplus 0,$$

then

$$e^z \rho(p) e^{-z} = \rho(q).$$

Note that z is antihermitian and lies in the C*-algebra generated by $\rho(p)$ and $\rho(q)$. Let x be an element in the C*-algebra generated by p and q (in \mathcal{M}) such that $\rho(ix) = z$. Then x is selfadjoint, is codiagonal with respect to p (i.e. $x \in (T\mathcal{P})_p$) and verifies

$$e^{ix}pe^{-ix} = a$$

Note also that $||x|| = ||z|| = \pi/2$. In particular, $\delta(t) = e^{itx}pe^{-itx}$ is a geodesic \mathcal{P}_p with $\delta(0) = p$ and $\delta(1) = q$. To finish the proof, it remains to prove that this geodesic δ is minimizing for the 2-metric. Suppose that γ joins p and q and $length(\delta) - length(\gamma) = r > 0$. For $t_r < 1$, let δ_r be the restriction of δ to the interval $[0, t_r]$. Note that, by (3.2), δ_r is a minimizing geodesic. Adjust t_r such that the length of the curve $e^{itx}pe^{-itx}$ with $t \in [t_r, 1]$, is less than r/2. Then this curve, followed by γ , form a piecewise C^1 curve which joins p and $e^{it_rx}pe^{-it_rx}$. Moreover, it measures $length(\gamma) + r/2 < length(\delta_r)$, which is a contradiction.

In this case, the geodesic δ may not be unique.

Corollary 3.4 The exponential map

$$exp_p: (T\mathcal{P})_p \to \mathcal{P}_p, exp_p(x) = e^{ix} p e^{-ix}$$

is surjective.

The above corollary is of course also valid in the norm topology context of [4], if the algebra is (a von Neumann algebra) of type II₁. There it was shown that exp_p fills the set $\{q \in \mathcal{P} : ||q-p|| < 1\}$.

Corollary 3.5 The geodesic radius of \mathcal{P}_p in the 2-metric is $\pi/2$.

Proof.
$$length(\delta) = ||xp - px||_2 \le ||xp - px|| = ||x|| \le \pi/2.$$

Remark 3.6 The curvature tensor of this connection is given by [4]

$$R_p(x, y, z) = [[x, y], z], x, y, z \in (T\mathcal{P})_p,$$

where $[\ ,\]$ is the usual commutant of operators. The sectional curvature of $\mathcal P$ is non negative:

$$< R_p(x,y)y, x > = 2(\tau(x^2y^2) - \tau(xyxy)).$$

Note that $\tau(xyxy) = \langle xy, yx \rangle \leq \langle xy, xy \rangle^{1/2} \langle yx, yx \rangle^{1/2} = \tau(x^2y^2)$ by the Cauchy-Schwarz inequality. In particular, the sectional curvature vanishes if and only equality occurs, which implies that there exists $\lambda \geq 0$ such that $xy = \lambda yx$ (or $yx = \lambda xy$, which is dealt analogously). Since x and y are selfadjoint, this implies that $yx = \lambda xy = \lambda^2 yx$. Then either yx = xy = 0 or $\lambda = 1$. Therefore vanishing of the sectional curvature implies commutation of x and y, the generators of the corresponding plane in $(T\mathcal{P})_p$.

4 \mathcal{P} is not a submanifold of \mathcal{H}

Here we prove that \mathcal{P} (or rather \mathcal{P}_p) is not a submanifold of $\mathcal{H} = L^2(\mathcal{M}, \tau)$, a fact which makes more relevant the minimality results of the previous section. As a consequence we obtain that the mapping $\xi \mapsto e^{i\xi} p e^{-i\xi}$, for $\xi \in \mathcal{H}$ with $J\xi = \xi$, is non differentiable. We also prove that, though \mathcal{P}_p is not a differentiable manifold, the geodesic distance and the norm $\|\cdot\|_2$ are equivalent metrics in \mathcal{P}_p .

Theorem 4.1 Let $p \in \mathcal{P}$, denote by \mathcal{P}_p the unitary orbit of p. Then $\mathcal{P}_p \subset \mathcal{H}$ is not a differentiable submanifold.

Proof. Suppose that $\mathcal{P}_p \subset \mathcal{H}$ is a differentiable submanifold. Then the tangent space at p is the set denoted earlier by $(T\mathcal{P})_p$. The trace inner product provides each tangent space with a complete inner product. Therefore \mathcal{P}_p is a Riemannian manifold. In particular, there is a normal neighbourhood for p, i.e. a ball in the $\|\cdot\|_2$ metric of $T(\mathcal{P})_p$ where the exponential map

$$exp_p: (T\mathcal{P})_p \to \mathcal{P}_p$$

is a diffeomorphism. By (3.1), the exponential map is given by

$$exp_p(z) = e^{iz}pe^{-iz}, z \in (T\mathcal{P})_p.$$

Suppose r is the radius of such a normal ball around the origin in $(T\mathcal{P})_p$ and fix $r > \delta > 0$. Let q_n and q'_n be projections in \mathcal{M} such that

$$q_n \le p, \ q'_n \le 1 - p, \ q_n \sim q'_n \text{ and } \tau(q_n) = \tau(q'_n) = \delta^2/n^2.$$

Let v_n be partial isometries in \mathcal{M} implementing the equivalence between q_n and q'_n : $v_n^*v_n = q_n$ and $v_nv_n^* = q'_n$. Note that $\tau(v_n) = 0$. Put $a_n = \frac{n}{\sqrt{2}}(v_n + v_n^*)$. Then $a_n^* = a_n$ and $a_n^2 = n^2/2(v_n^*v_n + v_nv_n^*) = n^2/2(q_n + q'_n)$, because $v_n^2 = 0$. Then

$$||a_n||_2 = \tau(a_n^2)^{1/2} = (n^2 \tau(q_n))^{1/2} = \delta.$$

Compute the powers a_n^k : for k even,

$$(v_n + v_n^*)^k = q_n + q_n',$$

for k odd

$$(v_n + v_n^*)^k = v_n + v_n^*.$$

Then

$$e^{ia_n} = 1 + (q_n + q'_n) \sum_{k>0 \text{ even}} \left(\frac{i\delta n}{\sqrt{2}}\right)^k \frac{1}{k!} + (v_n + v_n^*) \sum_{k \text{ odd}} \left(\frac{i\delta n}{\sqrt{2}}\right)^k \frac{1}{k!}$$

Then

$$\tau(e^{ia_n}) = 1 + 2(\cos(n/\sqrt{2}) - 1)\tau(q_n) = 1 + 2(\cos(n/\sqrt{2}) - 1)\frac{\delta^2}{n^2}.$$

Then $\tau(e^{ia_n}) \to 1$. Analogously $\tau(e^{-ia_n}) \to 1$. It follows that

$$||e^{\pm ia_n} - 1||_2^2 = 2 - \tau(e^{ia_n}) - \tau(e^{-ia_n}) \to 0.$$

The elements a_n lie in $(T\mathcal{P})_p$. Indeed, this is a consequence of $pv_np = (1-p)v_n(1-p) = 0$. This leads to a contradiction. On one hand, a_n form a sequence in a normal ball in $(T\mathcal{P})_p$ which do not converge to zero, because $||a_n||_2 = \delta > 0$. On the other hand, $e^{\pm ia_n} \to 1$ strongly, a fact which implies that

$$exp_p(a_n) \to p,$$

strongly, which contradicts the fact that exp_p is a (local) homeomorphism.

Denote by $\mathcal{H}_h = \{ \xi \in \mathcal{H} : J\xi = \xi \}$, i.e. the completion of the real subspace of selfadjoint elements of \mathcal{M} in the 2-norm. In [2] it was proven that the exponential map

$$\mathcal{H}_h \to U_\mathcal{M} \subset \mathcal{H}, \ \xi \mapsto e^{iL_\xi}$$
 (4.6)

is continuous, weakly C^1 but non (strongly) differentiable. The following is a related result.

Corollary 4.2 If $p \in \mathcal{P}$, the map

$$exp_p: (T\mathcal{P})_p \to \mathcal{P}_p \subset \mathcal{H}, \ exp_p(\xi) = e^{iL_\xi} p e^{-iL_\xi}$$

is continuous but non differentiable. Moreover, the restriction of the map (4.6)

$$(T\mathcal{P})_p \to U_{\mathcal{M}}, \ \xi \mapsto e^{iL_{\xi}}$$

is non differentiable.

Proof. If exp_p were differentiable, it would provide a local chart for $\mathcal{P}_p \subset \mathcal{H}$ near p. Translating this chart via the unitary action would endow \mathcal{P} with an atlas, a fact which contradicts the result above. If the second map $(T\mathcal{P})_p \ni \xi \mapsto e^{iL_{\xi}}$ were differentiable, then exp_p , which can be described in terms of products of this map, would be differentiable. Note that the product of differentiable maps on \mathcal{H} , which are uniformly bounded in the *usual* norm of \mathcal{M} , is also differentiable.

In view of (3.2) and (3.3), for each pair of equivalent projections p, q, there exists $x \in (T\mathcal{P})_p$ with $||x|| \leq \pi/2$ such that $q = e^{ix}pe^{-ix}$ and the corresponding geodesic is minimal. Then the geodesic distance equals

$$d(p,q) = \|ixp - ipx\|_2 = (2\tau(x^2p))^{1/2} = \tau(x^2)^{1/2}.$$

Proposition 4.3 The metric d and the norm $\| \|_2$ are equivalent in \mathcal{P}_p .

Proof. With the above notations, one has

$$||p-q||_2^2 = ||p-e^{ix}pe^{-ix}||_2^2 = 2\tau(p) - 2\tau(pe^{ix}pe^{-ix}p).$$

Note that since x = xp + px, x^2 commutes with p. Then $pe^{\pm ix}p = p\cos(x)p$. Also note that since x is selfadjoint with $||x|| \le \pi/2$,

$$\frac{4}{\pi}x^2 \le 1 - \cos(x) \le \frac{1}{2}x^2,$$

and therefore

$$\frac{4}{\pi^2} p x^2 p \le p - p \cos(x) p \le \frac{1}{2} p x^2 p. \tag{4.7}$$

On the other hand, $\tau(p-(p\cos(x)p)^2) = \tau((p-p\cos(x)p)(p+p\cos(x)p))$, and $p \le p+p\cos(x)p \le 2p$. Then, using that $p-p\cos(x)p \ge 0$,

$$p - p\cos(x)p \le (p - p\cos(x)p)^{1/2}(p + p\cos(x)p)(p - p\cos(x)p)^{1/2} \le 2(p - p\cos(x)p).$$

Taking traces one obtains

$$2\tau(p-p\cos(x)p) \le ||p-q||_2^2 \le 4\tau(p-p\cos(x)p).$$

Combining this with the elementary estimate (4.7), one gets

$$\frac{8}{\pi^2}\tau(px^2p) \le ||p - q||_2^2 \le 2\tau(px^2p),$$

i.e.

$$\frac{2}{\pi}d(p,q) \le ||p-q||_2 \le d(p,q).$$

5 k-norms

In this section we study the minimality problem of geodesics in \mathcal{P} measured in the k-norms, for $k \in \mathbb{R}$, k > 2. To do this we study first short curves of unitaries in these norms. Minimality of geodesics in \mathcal{P} will follow with arguments similar as in (3.2) and (3.3). As is standard notation [11], for $x \in \mathcal{M}$, let

$$||x||_k = \tau((x^*x)^{k/2})^{1/k},$$

and denote by $\mathcal{L}^k = L^k(\mathcal{M}, \tau)$ the completion of \mathcal{M} with this norm $\|\cdot\|_k$. Fix r > 0 and let

$$\mathcal{S}_r^k = \{ x \in \mathcal{L}^k : ||x||_k = r \}$$

be the sphere of radius r in \mathcal{L}^k . Let us transcribe Jensen's trace inequality for C*-algebras by Hansen and Pedersen ([7], Th. 2.7): if f(t) is a convex continuous real function, defined on an interval I and and \mathcal{A} is a C*-algebra with trace tr, then the inequality

$$tr(f(\sum_{i=1}^{n} b_i^* a_i b_i)) \le tr(\sum_{i=1}^{n} b_i^* f(a_i) b_i)$$
 (5.8)

is valid for every n-tuple (a_1, \ldots, a_n) of selfadjoint elements in \mathcal{A} with spectra contained in I and every n-tuple (b_1, \ldots, b_n) in \mathcal{A} with $\sum_{i=1}^n b_i^* b_i = 1$. The following inequality is a trivial consequence of (5.8) in its simplest form: a is a selfadjoint element in a C^* -algebra with trace tr, then $tr(f(a)) \leq f(tr(a))$ for every convex continuous real function defined in the spectrum of a. We state it as a lemma for it will be useful below.

Lemma 5.1 Let $a \in \mathcal{M}$ be positive and $p \in \mathcal{P}$. Then, if $r \in \mathbb{R}$, $r \geq 1$

$$\tau(pap)^r \le \tau(p)^{r-1}\tau((pap)^r).$$

Proof. If p=0 the result is trivial. Suppose $\tau(p)\neq 0$. Consider the algebra $p\mathcal{M}p$, with unit p and normalized trace $tr(pxp)=\frac{\tau(pxp)}{\tau(p)}$. Then by Jensen's trace inequality for the map $f(t)=t^r$,

$$\frac{\tau(pap)^r}{\tau(p)^r} \le \frac{\tau((pap)^r)}{\tau(p)},$$

which is the desired inequality.

Using this inequality we obtain a minimality result for curves in spheres of the k-norms, for k > 2. If $\mu(t)$ is a curve of unitaries in \mathcal{M} , and p is a projection with $\tau(p) = r^k$, then $\mu(t)p$ is a curve in \mathcal{S}_r^k : $\|\mu p\|_k = \tau((p\mu^*\mu p)^{k/2})^{1/k} = r$.

Lemma 5.2 Let $\mu(t)$ be a smooth curve of unitaries in \mathcal{M} , such that $\mu(0)p = p$ and $\mu(1)p = e^{i\alpha}p$ with $-\pi < \alpha < \pi$. Then the curve μp of \mathcal{S}_r^k , measured with the k-norm, is longer than the curve $\epsilon(t) = e^{it\alpha}p$.

Proof. The length of μp is (in the k-norm) measured by

$$\int_0^1 \|\dot{\mu}(t)p\|_k dt = \int_0^1 \tau((p\dot{\mu}(t)^*\dot{\mu}(t)p)^{k/2})^{1/k} dt.$$

by the inequality in the above lemma,

$$length_k(\mu p) \ge \tau(p)^{\frac{k/2-1}{k}} \int_0^1 \tau(p\dot{\mu}(t)^*\dot{\mu}(t)p)^{1/2} dt.$$

This last integral measures the length of the curve μp in the 2-sphere S_r^2 of radius $r^{1/2}$ in the Hilbert space $L^2(\mathcal{M},\tau)$. It is well known that the curves $\epsilon(t)=e^{it\alpha}p$ are minimizing geodesics of these spheres, provided that $|\alpha|r^{1/2}<\pi$, which holds because $r=\tau(p)^{1/k}<1$. It follows that

$$\int_{0}^{1} \tau(p\dot{\mu}(t)^{*}\dot{\mu}(t)p)^{1/2} \ge length_{2}(\epsilon) = |\alpha|\tau(p)^{1/2}.$$

Then

$$length_k(\mu p) \ge |\alpha|\tau(p)^{\frac{k/2-1}{k}}\tau(p)^{1/2} = |\alpha|\tau(p)^{1/k} = length_k(\epsilon).$$

Lemma 5.3 Let $x = \sum_{i=1}^{n} \alpha_i p_i$ with $\sum_{i=1}^{n} p_i = 1$ and $-\pi < \alpha_i < \pi$ (i.e. $||x|| < \pi$). Then the curve $\delta(t) = e^{itx}$, $t \in [0,1]$ is the shortest curve in $U_{\mathcal{M}}$ joining its endpoints, when measured with the k-norm.

Proof. Let $\tau(p_i) = r_i^k$, and put

$$\mathcal{S}_{\vec{r}} = \mathcal{S}_{r_1}^k \times \ldots \times \mathcal{S}_{r_n}^k.$$

Consider in $S_{\vec{r}}$ the following norm:

$$\|(x_1,\ldots,x_n)\| = \{\sum_{i=1}^n \|x_i\|_k^k\}^{1/k}.$$

Consider the map

$$\rho: U_{\mathcal{M}} \to \mathcal{S}_{\vec{r}}, \ \rho(u) = (up_1, \dots, up_n).$$

Clearly it is well defined. Let us prove that it decreases the lengths of curves. Indeed, let $\mu(t) \in U_{\mathcal{M}}$ be a smooth curve of unitaries, $t \in [0,1]$. The length of μ is measured by $\int_0^1 \|\dot{\mu}(t)^*\dot{\mu}(t)\|_k dt$. The length of $\rho(\mu)$ is $\int_0^1 \|(\dot{\mu}(t)p_1,\ldots,\dot{\mu}(t)p_n)\|dt$. Let us show that

$$\|\dot{\mu}(t)^*\dot{\mu}(t)\|_k \ge \|(\dot{\mu}(t)p_1,\dots,\dot{\mu}(t)p_n)\|.$$
 (5.9)

Note that

$$\|(\dot{\mu}(t)p_1,\ldots,\dot{\mu}(t)p_n)\| = \{\sum_{i=1}^n \tau(p_i\dot{\mu}(t)^*\dot{\mu}(t)p_i)^{k/2})\}^{1/k}.$$

This inequality (5.9) is again a consequence of Jensen's trace inequality [7] for the convex map $f(t) = t^{k/2}$ $(k \ge 2)$, putting $b_i = p_i$ and $a_i = a$ in (5.8): $\sum_{i=1}^n \tau(p_i a^{k/2} p_i) \ge \sum_{i=1}^n \tau([p_i a p_i]^{k/2})$. Then

$$\|\dot{\mu}(t)^*\dot{\mu}(t)\|_k^k = \tau((\dot{\mu}(t)^*\dot{\mu}(t))^{k/2}) = \sum_{i=1}^n \tau(p_1(\dot{\mu}(t)^*\dot{\mu}(t))^{k/2}p_i) \ge \sum_{i=1}^n \tau(p_i\dot{\mu}(t)^*\dot{\mu}(t)p_i)^{k/2})$$
$$= \sum_{i=1}^n \|\dot{\mu}(t)p_i\|_k^k.$$

On the other hand, note that $length(\delta) = length(\rho(\delta))$. Indeed,

$$\|(\dot{\delta}(t)p_1,\ldots,\dot{\delta}(t)p_n)\| = \|(i\alpha_1e^{it\alpha_1}p_1,\ldots,\alpha_ne^{it\alpha_n}p_n)\| = \{\sum_{i=1}^n |\alpha_i|^kr_i^k\}^{1/k} = \|\dot{\delta}(t)^*\dot{\delta}(t)\|_k.$$

We finish the proof by establishing that

$$length(\rho(\mu)) \ge length(\rho(\delta)) = length(\delta).$$
 (5.10)

There is a classic Minkowski type inequality (see inequality **201** of [6]) which states that if f_1, \ldots, f_n are non negative functions, then

$$\int_0^1 \{\sum_{i=0}^n f_i^k(t)\}^{1/k} dt \ge \left(\sum_{i=1}^n \{\int_0^1 f_i(t)\}^k\right)^{1/k}.$$

In our case $f_i(t) = \|\dot{\mu}(t)p_i\|_k$:

$$\int_0^1 \{\sum_{i=0}^n \|\dot{\mu}(t)p_i\|_k^k)\}^{1/k} dt \ge \left(\sum_{i=1}^n \{\int_0^1 \|\dot{\mu}(t)p_i\|_k dt\}^k\right)^{1/k} \ge \{\sum_{i=1}^n |\alpha_i|^k r_i^k\}^{1/k},$$

where in the last inequality we use the previous lemma: $\int_0^1 \|\dot{\mu}(t)\|_k dt \ge |\alpha_i| r_i$ for $i = 1, \ldots, n$.

The following result is proved analogously as Lemma 3.2 in [1].

Theorem 5.4 Let $x \in \mathcal{M}$ be a selfadjoint element with $||x|| \leq \pi$, and $v \in U_{\mathcal{M}}$. Then the curve $\delta(t) = ve^{itx}$ has minimal length among piecewise C^1 curves of unitaries joining its endpoints, measured with the k-norm.

Proof. There is no loss in generality if we suppose v = 1. Indeed, for any curve μ of unitaries, $length(\mu) = length(v^*\mu)$.

Let us first consider the case $||x|| < \pi$. Suppose that there exists a piecewise C^1 curve of unitaries μ which is strictly shorter than δ , $\ell(\mu) < \ell(\delta) - \epsilon = ||x||_2 - \epsilon$. The element x can be approximated in the norm topology of \mathcal{M} by selfadjoint elements of \mathcal{M} , say z, with finite spectrum and the following conditions:

- 1. $||z|| \le ||x|| < \pi$.
- 2. $||x||_k \epsilon/2 < ||z||_k \le ||x||_k$.
- 3. $||e^{ix} e^{iz}|| < 2$.
- 4. There exists a C^{∞} curve of unitaries joining e^{ix} and e^{iz} of length less than $\epsilon/2$.

The first three are clear. The fourth condition can be obtained as follows. By the third condition $e^{-ix}e^{iz}=e^{iy}$, with $y^*=y\in\mathcal{M}$. Moreover z can be adjusted so as to obtain y of arbitrarily small norm. Then the curve of unitaries $\gamma(t)=e^{ix}e^{ity}$ is C^{∞} , joins e^{ix} and e^{iz} , with length $||y||_k \leq ||y|| < \epsilon/2$.

Consider now the curve μ' , which is the curve μ followed by the curve $e^{ix}e^{ity}$ above. Then clearly

$$length(\mu') \le length(\mu) + ||y||_k < length(\mu) + \epsilon/2.$$

Therefore $length(\mu') < ||x||_k - \epsilon/2$. On the other hand, since μ' joins 1 and e^{iz} , by the lemma above, it must have length greater than or equal to $||z||_k$. It follows that

$$||z||_k \le ||x||_k - \epsilon/2,$$

a contradiction.

If $||x|| = \pi$, x can be approximated by selfadjoint elements z with $||z|| < \pi$. An argument similar as the first part of this proof, shows that one cannot find a shorter curve μ of unitaries joining the same endpoints as δ .

The following corollary is proved appealing to the innersion of \mathcal{P} as reflections inside $U_{\mathcal{M}}$, as in Theorem 3.2.

Corollary 5.5 Let p and q be equivalent projections in \mathcal{M} and let $x \in \mathcal{M}$ with $||x|| \leq \pi/2$ such that the geodesic $\delta(t) = e^{itx} p e^{-itx}$ joins them $(\delta(1) = q)$. Then this geodesic has minimal length for the k-norm. If ||p - q|| < 1, this geodesic is unique.

Proof. The curve $2\delta - 1$ has minimal length in $U_{\mathcal{M}}$.

We would like to know if this minimality result holds also for for $1 \le k < 2$.

References

[1] E. Andruchow, Short geodesics of unitaries in the L^2 metric, Can. Math. Bull. (to appear).

- [2] E. Andruchow, A non smooth exponential, Studia Mathematica 155 (3) (2003), 265-271.
- [3] L.G. Brown, The rectifiable metric on the set of closed subspaces of Hilbert space, Trans. Amer. Math. Soc. 337 (1993), 279-289.
- [4] G. Corach, H. Porta, L.Recht, The geometry of spaces of projections in C*-algebras, Adv. Math. 101 No. 1 (1993), 59-77.
- [5] C.E. Durán, L.E. Mata-Lorenzo, L. Recht, Natural variational problems in the Grassmann manifold of a C*-algebra with trace, Adv. Math. 154 (2000), 169-228.
- [6] G.H. Hardy, J.E. Littlewood, G. Polya, Inequalities, Cambridge University Press, London, 1934.
- [7] F.Hansen, G.K. Pedersen, Jensen's operator inequality, Bull. London Math. Soc. 35 (2003),553-564.
- [8] N.C. Phillips, The rectifiable metric on the space of projections in a C*-algebra, Int. J. Math. 3 No. 5 (1992), 679-698.
- [9] H. Porta, L. Recht, Minimality of geodesics in Grassmann manifolds, Proc. Amer. Math. Soc. 100 (1987), 464-466.
- [10] M. Read, B. Simon, Methods of Modern Mathematical Physics, vol. I: Functional Analysis, Academic Press, New York, 1978.
- [11] I.E. Segal, A non commutative extension of abstract integration, Ann. Math. 57 (1953), 401-457.
- [12] S. Zhang, Rectifiable diameters of the Grassmann spaces of certain von Neumann algebras and C*-algebras, Pacific J. Math. 177 No. 2 (1997), 377-398.

Esteban Andruchow Instituto de Ciencias Universidad Nacional de Gral. Sarmiento J. M. Gutierrez 1150 (1613) Los Polvorines Argentina e-mail: eandruch@ungs.edu.ar

Lázaro Recht Departamento de Matemática P y A Universidad Simón Bolívar Apartado 89000 Caracas 1080A Venezuela e-mail: recht@usb.ve