Unitarization of uniformly bounded subgroups in finite von Neumann algebras

Martín Miglioli*

Abstract

This note presents a new proof of the fact that every uniformly bounded group of invertible elements in a finite von Neumann algebra is similar to a unitary group. In 1974 Vasilescu and Zsido proved this result using the Ryll-Nardzewsky fixed point theorem. This new proof involves metric geometric arguments in the non-positively curved space of positive invertible operators of the algebra, which yield a more explicit unitarizer. ¹

1 Geometry of the cone of positive invertible operators in a finite algebra

The metric geometry of the cone of positive invertible operators in a finite von Neumann algebra was studied in [1, 4]. In this section we recall some facts from these papers.

Let \mathcal{A} be a von Neumann algebra with a finite (normal, faithful) trace τ . Denote by \mathcal{A}_{sa} the set of self-adjoint operators, by G the group of invertible operators, by U the group of unitary operators, and by P the set of positive invertible operators in \mathcal{A} .

Since P is an open subset of \mathcal{A}_{sa} in the norm topology we can regard P as a submanifold of \mathcal{A}_{sa} . Therefore the tangent spaces of P identify with \mathcal{A}_{sa} endowed with the uniform norm, which we denote by $\|\cdot\|$. The pre-Hilbert norm $\|x\|_2 = \tau(x^2)^{\frac{1}{2}}$ on \mathcal{A}_{sa} is used to give P a Finslerian length structure (see [3] Section 2). The admissible paths of the length structure are the piecewise smooth curves in P and for each $a \in P$ the tangent space $T_aP \simeq \mathcal{A}_{sa}$ is endowed with the norm given by $\|x\|_{a,2} = \|a^{-\frac{1}{2}}xa^{-\frac{1}{2}}\|_2$ for $x \in \mathcal{A}_{sa}$. For $a,b \in P$ the unique geodesic $\gamma_{a,b}: [0,1] \to P$ between a and b is given by $\gamma_{a,b}(t) = a^{\frac{1}{2}}(a^{-\frac{1}{2}}ba^{-\frac{1}{2}})^ta^{\frac{1}{2}}$ and has length equal to $d(a,b) = Length(\gamma_{a,b}) = \|ln(a^{-\frac{1}{2}}ba^{-\frac{1}{2}})\|_2$, see [1, Th. 3.1 and Th. 3.2]. The interior metric space associated with this length structure will be denoted by (P,d). If \mathcal{A} is finite dimensional, and therefore a sum of matrix spaces, the metric d is the well-known non-positively curved Riemannian metric on the set of positive definite matrices [6].

^{*}e-mail: martin.miglioli@gmail.com. Supported by Agencia Nacional de Promoción Científica y Tecnológica, and Instituto Argentino de Matemática Alberto P. Calderón, CONICET. Saavedra 15, Piso 3, (1083) Buenos Aires, Argentina.

¹Keywords: finite algebra, bounded subgroup, positive operator, nonposite curvature, unitarization, Bruhat-Tits fixed point theorem.

If \mathcal{A} is of type II_1 , the trace inner product is not complete, so P is not a Hilbert-Riemann manifold and (P, d) is not a complete metric space, see [4, Rem. 3.21].

The semi-parallelogram law, which states that if $a, b, c \in P$ then

$$d(a,b)^{2} + 4d(c,\gamma_{a,b}(\frac{1}{2}))^{2} \le 2(d(c,a)^{2} + d(c,b)^{2}),$$

holds in the metric space (P, d), see [4, Th. 4.4]. Hence the midpoint between a and b is $\gamma_{a,b}(\frac{1}{2})$. See the beginning of [5, Ch. XI, Section 3] for further discussion on the semi-parallelogram law and midpoint maps.

The action of G on P given by $I_g(a) = gag^*$ sends geodesic segments to geodesic segments and is isometric, i.e. $I_g \circ \gamma_{a,b} = \gamma_{I_g(a),I_g(b)}$ and $d(I_g(a),I_g(b)) = d(a,b)$ for all $a,b \in P$ and $g \in G$, see the introduction of [1].

2 Uniformly bounded subgroups

A subset $C \subseteq P$ is geodesically convex if $\gamma_{a,b}(t) \in C$ for every $a,b \in C$ and $t \in [0,1]$, and is midpoint convex if $\gamma_{a,b}(\frac{1}{2}) \in C$ for every $a,b \in C$. Note that a geodesically convex set is midpoint convex.

Lemma 2.1. If $C \subseteq P$ is geodesically convex then its closure \overline{C} in (P,d) is geodesically convex.

Proof. By [1, Cor. 3.4] the distance between two geodesics is convex, i.e.

$$t \mapsto d(\gamma_{a_1,b_1}(t), \gamma_{a_2,b_2}(t)), \qquad [0,1] \to [0,+\infty)$$

is convex for all $a_1, b_1, a_2, b_2 \in P$. Hence, for a fixed $t \in [0, 1]$, the function $(a, b) \mapsto \gamma_{a,b}(t)$ is d-continuous.

If $a, b \in \overline{C}$ and $t \in [0, 1]$ let $(a_n)_n, (b_n)_n$ be sequences in C such that $a_n \to a$ and $b_n \to b$. Since C is geodesically convex $\gamma_{a_n,b_n}(t) \in C$ for all $n \in \mathbb{N}$. The d-continuity of $(a,b) \mapsto \gamma_{a,b}(t)$ implies that $\gamma_{a_n,b_n}(t) \to \gamma_{a,b}(t)$, so that $\gamma_{a,b}(t) \in \overline{C}$.

Lemma 2.2. For $0 < c_1 < c_2$ the interval $P_{c_1,c_2} = \{a \in P : c_1 1 \le a \le c_2 1\}$ endowed with the metric d is a complete and bounded metric space.

Proof. In P_{c_1,c_2} the linear metric and the rectifiable distance are equivalent [4, Prop. 3.2], i.e. there are C, C' > 0 such that $||a - b||_2 \le Cd(a,b)$ and $d(a,b) \le C' ||a - b||_2$ for all $a,b \in P_{c_1,c_2}$.

Since $\|\cdot\|_2$ induces a complete metric on subsets of \mathcal{A} which are closed and bounded in the uniform norm, and P_{c_1,c_2} is closed and bounded in the uniform norm, we conclude that (P_{c_1,c_2},d) is a complete metric space.

Also, (P_{c_1,c_2},d) is a bounded metric space because $d(a,b) \leq C' \|a-b\|_2 \leq C' \|a-b\| \leq 2C' c_2$ for all $a,b \in P_{c_1,c_2}$.

Theorem 2.3. If $H \subseteq G$ is a subgroup such that $\sup_{h \in H} ||h|| = M < \infty$ then there exists $s \in P_{M^{-1},M}$ such that $s^{-1}Hs \subseteq U$.

Proof. Consider the isometric action $I: H \to Isom(P)$ given by $I_h(a) = hah^*$ for $h \in H$ and $a \in P$. We denote the action by $h \cdot a = I_h(a)$. Take $X_1 = H \cdot 1$ and define inductively $X_{n+1} = \{\gamma_{a,b}(t) : a,b \in X_n, t \in [0,1]\}$ for $n \geq 1$. Let

$$conv(H \cdot 1) = \bigcup_{n \in \mathbb{N}} X_n.$$

Since P_{M^{-2},M^2} is geodesically convex [2] and the action sends geodesic segments to geodesic segments, if $X_n \subseteq P_{M^{-2},M^2}$ then $X_{n+1} \subseteq P_{M^{-2},M^2}$ for all $n \in \mathbb{N}$. Therefore $conv(H \cdot 1) \subseteq P_{M^{-2},M^2}$ follows from $X_1 = H \cdot 1 = \{hh^*\}_{h \in H} \subseteq P_{M^{-2},M^2}$. Using the fact that P_{M^{-2},M^2} is closed in (P,d) we conclude that $\overline{conv}(H \cdot 1) \subseteq P_{M^{-2},M^2}$.

Since the action sends geodesic segments to geodesic segments, if X_n is invariant under the action I then X_{n+1} is invariant for all $n \in \mathbb{N}$. Since $X_1 = H \cdot 1$ is invariant, we conclude that $conv(H \cdot 1)$ is invariant. The action is also isometric, hence $\overline{conv}(H \cdot 1)$ is invariant and we can restrict the action I to this subset.

The space $(\overline{conv}(H \cdot 1), d)$ is midpoint convex and the semi-parallelogram law holds in P, hence this law also holds in $(\overline{conv}(H \cdot 1), d)$. Since $\overline{conv}(H \cdot 1)$ is a closed subset of the complete metric space (P_{M^{-2},M^2}, d) the space $(\overline{conv}(H \cdot 1), d)$ is complete. We conclude that $(\overline{conv}(H \cdot 1), d)$ is a complete metric space in which the semi-parallelogram holds.

Since (P_{M^{-2},M^2},d) is a bounded metric space $\overline{conv}(H\cdot 1)$ is a bounded set. Therefore the restricted action has bounded orbits, and the Bruhat-Tits fixed point theorem [5, Ch. XI, Th 3.2] states that there exists $a\in \overline{conv}(H\cdot 1)$ such that $I_h(a)=hah^*=a$ for all $h\in H$. Then

$$1 = a^{-\frac{1}{2}}aa^{-\frac{1}{2}} = a^{-\frac{1}{2}}hah^*a^{-\frac{1}{2}} = (a^{-\frac{1}{2}}ha^{\frac{1}{2}})(a^{\frac{1}{2}}h^*a^{-\frac{1}{2}})$$
$$= (a^{-\frac{1}{2}}ha^{\frac{1}{2}})(a^{-\frac{1}{2}}ha^{\frac{1}{2}})^* \quad \text{for all } h \in H.$$

Therefore $a^{-\frac{1}{2}}Ha^{\frac{1}{2}}\subseteq U,$ i.e. $s=a^{\frac{1}{2}}$ is a unitarizer of H.

Since the square root is an operator monotone function and $a \in P_{M^{-2},M^2}$, it follows that $s = a^{\frac{1}{2}} \in P_{M^{-1},M}$.

Remark 2.4. A fixed point of the action I in the above theorem is the circumcenter of the set $H \cdot 1 = \{hh^*\}_{h \in H}$ in $(\overline{conv}(H \cdot 1), d)$, see [5, Ch. XI, Th 3.1 and Th 3.2]. Therefore, a unitarizer s is the square root of the circumcenter of $\{hh^*\}_{h \in H}$. The unitarizability of a uniformly bounded subgroup H of the group of bounded linear invertible operators acting on a Hilbert space was obtained independently in the 50s by Day, Dixmier, Nakamura and Takeda assuming that H is amenable (see [7] and the references therein). In that context the unitarizer s was obtained as the square root of the center of mass of $\{hh^*\}_{h \in H}$.

References

- [1] E. Andruchow and G. Larotonda, Nonpositively Curved Metric in the Positive Cone of a Finite von Neumann Algebra, J. London Math. Soc. (2) 74 (2006), no. 1, 205-218.
- [2] E. Andruchow, G. Corach and D. Stojanoff, Geometrical Significance of Löwner-Heinz inequality, Proc. Amer. Math. Soc. 128 (2000), no. 4, 1031-1037.
- [3] D. Burago, Y. Burago and S. Ivanov, A Course in Metric Geometry, Amer. Math. Soc., Providence, 2001.
- [4] C. Conde and G. Larotonda, Spaces of nonpositive curvature arising from a finite algebra, J. Math. Anal. Appl. 368 (2010), no. 2, 636–649.
- [5] S. Lang, Fundamentals of Differential Geometry, Graduate Texts in Mathematics, 191. Springer-Verlag, New York, 1999.

- [6] G. D. Mostow, Some new decomposition theorems for semi-simple groups, Mem. Amer. Math. Soc. (1955), no. 14, 31-54.
- [7] M. Nakamura and Z. Takeda, Group representation and Banach limit, Tohoku Math. J. 3 (1951) 132-135.
- [8] F. H. Vasilescu and L. Zsido, *Uniformly bounded groups in finite W*-algebras*, Acta Sci. Math. (Szeged), 36 (1974), 189-192.