On normal operator logarithms

Eduardo Chiumiento *

Abstract

Let X,Y be normal bounded operators on a Hilbert space such that $e^X=e^Y$. If the spectra of X and Y are contained in the strip S of the complex plane defined by $|\operatorname{Im}(z)| \leq \pi$, we show that |X| = |Y|. If Y is only assumed to be bounded, then |X|Y = Y|X|. We give a formula for X-Y in terms of spectral projections of X and Y provided that X,Y are normal and $e^X=e^Y$. If X is an unbounded self-adjoint operator, which does not have $(2k+1)\pi$, $k\in \mathbb{Z}$, as eigenvalues, and Y is normal with spectrum in S satisfying $e^{iX}=e^Y$, then $Y\in \{e^{iX}\}''$. We give alternative proofs and generalizations of results on normal operator exponentials proved by Ch. Schmoeger.

AMS classification: 47B15; 47A60.

Keywords: Exponential map, normal operator, spectral theorem.

1 Introduction

Solutions to the equation $e^X = e^Y$ were studied by E. Hille [1] in the general setting of unital Banach algebras. Under the assumption that the spectrum $\sigma(X)$ of X is incongruent $(\text{mod } 2\pi i)$, which means that $\sigma(X) \cap \sigma(X + 2k\pi i) = \emptyset$ for all $k = \pm 1, \pm 2, \ldots$, he proved that XY = YX and there exist idempotents E_1, E_2, \ldots, E_n commuting with X and Y such that

$$X - Y = 2\pi i \sum_{j=1}^{n} k_j E_j, \qquad \sum_{j=1}^{n} E_j = I, \qquad E_i E_j = \delta_{ij},$$

where k_1, k_2, \ldots, k_n are different integers. If the hypothesis on the spectrum is removed, it is possible to find non commuting logarithms (see e.g. [1, 6]). In the setting of Hilbert spaces, when X is a normal operator, the above assumption on the spectrum can be weakened. In fact, Ch. Schmoeger [5] proved that X belongs to the double commutant of Y provided that $E_X(\sigma(X) \cap \sigma(X + 2k\pi i)) = 0, k = 1, 2, \ldots$, where E_X is the spectral measure of X. We also refer to [3] for a generalization of this result by F. C. Paliogiannis.

In this paper, we study the operator equation $e^X = e^Y$ in the setting of Hilbert spaces under the assumption that the spectra of X and Y belong to a non-injective domain of the complex exponential map. Our results include the relation between the modulus of X and Y (Theorem 3.1), a formula for the difference of two normal logarithms in terms of their spectral projections (Theorem 4.1) and commutation relations when X is a skew-adjoint unbounded operator (Theorem 5.1). The proofs of these results are elementary. In fact, they rely on the spectral theorem for normal operators. This approach allows us to give a generalization (Corollary 4.2) and an alternative proof (Corollary 3.2) of two results by Ch. Schmoeger (see [6]).

^{*}Partially supported by Instituto Argentino de Matemática 'Alberto P. Calderón' and CONICET

2 Notation and preliminaries

Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be a complex Hilbert space and $\mathcal{B}(\mathcal{H})$ be the algebra of bounded operators on \mathcal{H} . The spectrum of an operator X is denoted by $\sigma(X)$, and the set of eigenvalues of X is denoted by $\sigma_p(X)$. The real part of $X \in \mathcal{B}(\mathcal{H})$ is $\text{Re}(X) = \frac{1}{2}(X + X^*)$ and its imaginary part is $\text{Im}(X) = \frac{1}{2}(X - X^*)$.

If X is a bounded or unbounded normal operator on \mathcal{H} , we denote by E_X the spectral measure of X. Recall that E_X is defined on the Borel subsets of $\sigma(X)$, but we may think that E_X is defined on all the Borel subsets of \mathbb{C} . Indeed, we can set $E_X(\Omega) = E_X(\Omega \cap \sigma(X))$ for every Borel set $\Omega \subseteq \mathbb{C}$. Our first lemma is a generalized version of [4, Ch. XII Ex. 25], where the normal operator can now be unbounded.

Lemma 2.1. Let X be a (possibly unbounded) normal operator on \mathcal{H} and f a bounded Borel function on $\sigma(X)$. Then

$$E_{f(X)}(\Omega) = E_X(f^{-1}(\Omega)).$$

for every Borel set $\Omega \subseteq \mathbb{C}$.

Proof. We define a spectral measure by $E'(\Omega) = E_X(f^{-1}(\Omega))$, where Ω is any Borel subset of \mathbb{C} . We are going to show that $E' = E_{f(X)}$. Since f is bounded, it follows that $f(X) \in \mathcal{B}(\mathcal{H})$. Moreover, the operator f(X) is given by

$$\langle f(X)\xi,\eta\rangle = \int_{\mathbb{C}} f(z) dE_{X\xi,\eta}(z),$$

where $\xi, \eta \in \mathcal{H}$ and $E_{X\xi,\eta}$ is the complex measure defined by $E_{X\xi,\eta}(\Omega) = \langle E_X(\Omega)\xi, \eta \rangle$ (see [4, Theorem 12.21]). By the change of measure principle ([4, Theorem 13.28]), we have

$$\int_{\mathbb{C}} z \, dE'_{\xi,\eta}(z) = \int_{\mathbb{C}} f(z) \, dE_{X\,\xi,\eta}(z).$$

Therefore E' satisfies the equation $\int_{\mathbb{C}} z \, dE'_{\xi,\eta}(z) = \langle f(X)\xi,\eta\rangle$, which uniquely determines the spectral measure of f(X) (see [4, Theorem 12.23]). Hence $E' = E_{f(X)}$.

The following lemma was first proved in [6, Corollary 2]. See also [3, Corollary 3] for another proof. We give below a proof for the sake of completeness, which does not depend on further results of these articles.

Lemma 2.2. Let X and Y be normal operators in $\mathcal{B}(\mathcal{H})$. If $e^X = e^Y$, then $\operatorname{Re}(X) = \operatorname{Re}(Y)$.

Proof. The following computation was done in [6]:

$$e^{X+X^*} = e^X e^{X^*} = e^X (e^X)^* = e^Y (e^Y)^* = e^Y e^{Y^*} = e^{Y+Y^*},$$

where the first and last equalities hold because X and Y are normal. Now we may finish the proof in a different fashion: note that the exponential map, restricted to real axis, has an inverse $\log : \mathbb{R}_+ \to \mathbb{R}$. Since $\sigma(X+X^*) \subseteq \mathbb{R}$ and $\sigma(e^{X+X^*}) \subseteq \mathbb{R}_+$, we can use the continuous functional calculus to get $X+X^*=\log(e^{X+X^*})=\log(e^{Y+Y^*})=Y+Y^*$.

Throughout this paper, we use the following notation for subsets of the complex plane:

- $\Omega_1 + i\Omega_2 = \{x + iy : x \in \Omega_1, y \in \Omega_2\}$, where Ω_i , i = 1, 2, are subsets of \mathbb{R} .
- For short, we write $\mathbb{R} + ia$ for the set $\mathbb{R} + i\{a\}$.
- We write S for the complex strip $\{z \in \mathbb{C} : -\pi \leq \text{Im}(z) \leq \pi\}$, and S° for the interior of S.

Lemma 2.3. Let X, Y be normal operators in $\mathcal{B}(\mathcal{H})$ such that $\sigma(X) \subseteq \mathcal{S}$ and $\sigma(Y) \subseteq \mathcal{S}$. Then $e^X = e^Y$ if and only if the following conditions hold:

- i) $E_X(\Omega) = E_Y(\Omega)$ for all Borel subsets Ω of S° .
- $ii) \operatorname{Re}(X) = \operatorname{Re}(Y).$

Proof. Suppose that $e^X = e^Y$. Let Ω be a Borel measurable subset of \mathcal{S}° . By the spectral mapping theorem,

$$\sigma(e^X) = \{ e^\lambda \, : \, \lambda \in \sigma(X) \, \} = \{ e^\mu \, : \, \mu \in \sigma(Y) \, \} = \sigma(e^Y).$$

It is well-known that the restriction of the complex exponential map $\exp |_{S^{\circ}}$ is bijective. Therefore we have $\sigma(X) \cap \Omega = \sigma(Y) \cap \Omega$, and by Lemma 2.1,

$$E_X(\Omega) = E_X(\Omega \cap \sigma(X)) = E_X(\exp^{-1}(\exp(\Omega \cap \sigma(X))))$$

= $E_{e^X}(\exp(\Omega \cap \sigma(X))) = E_{e^Y}(\exp(\Omega \cap \sigma(Y))) = E_Y(\Omega),$

which proves i). On the other hand, ii) is proved in Lemma 2.2.

To prove the converse assertion, we first note that

$$E_X(\mathbb{R} - i\pi) + E_X(\mathbb{R} + i\pi) = I - E_X(\mathcal{S}^\circ) = I - E_Y(\mathcal{S}^\circ)$$
$$= E_Y(\mathbb{R} - i\pi) + E_Y(\mathbb{R} + i\pi),$$

since $\sigma(X) \subseteq \mathcal{S}$, $\sigma(Y) \subseteq \mathcal{S}$ and $E_X(\mathcal{S}^\circ) = E_Y(\mathcal{S}^\circ)$. Due to the fact that E_X and E_Y coincide on Borel subsets of \mathcal{S}° , we find that

$$\int_{\mathcal{S}^{\circ}} e^z dE_X(z) = \int_{\mathcal{S}^{\circ}} e^z dE_Y(z).$$

Hence we get

$$e^{X} = \int_{\mathcal{S}} e^{z} dE_{X}(z) = -\int_{\mathbb{R}+i\pi} e^{\operatorname{Re}(z)} dE_{X}(z) - \int_{\mathbb{R}-i\pi} e^{\operatorname{Re}(z)} dE_{X}(z) + \int_{\mathcal{S}^{\circ}} e^{z} dE_{X}(z)$$

$$= -e^{\operatorname{Re}(X)} \left(E_{X}(\mathbb{R}+i\pi) + E_{X}(\mathbb{R}-i\pi) \right) + \int_{\mathcal{S}^{\circ}} e^{z} dE_{X}(z)$$

$$= -e^{\operatorname{Re}(Y)} \left(E_{Y}(\mathbb{R}+i\pi) + E_{Y}(\mathbb{R}-i\pi) \right) + \int_{\mathcal{S}^{\circ}} e^{z} dE_{Y}(z) = e^{Y}.$$

Remark 2.4. We have shown that $E_X(\mathbb{R} - i\pi) + E_X(\mathbb{R} + i\pi) = E_Y(\mathbb{R} - i\pi) + E_Y(\mathbb{R} + i\pi)$, whenever X, Y are normal bounded operators such that $\sigma(X) \subseteq \mathcal{S}$, $\sigma(Y) \subseteq \mathcal{S}$ and $e^X = e^Y$.

Theorem 2.5. (S. Kurepa [2]) Let $X \in \mathcal{B}(\mathcal{H})$ such that $e^X = N$ is a normal operator. Then

$$X = N_0 + 2\pi i W,$$

where $N_0 = \log(N)$ and \log is the principal (or any) branch of the logarithm function. The bounded operator W commutes with N_0 and there exists a bounded and regular, positive definite self-adjoint operator Q such that $W_0 = Q^{-1}WQ$ is a self-adjoint operator the spectrum of which belongs to the set of all integers.

3 Modulus and square of logarithms

Now we show the relation between the modulus of two normal logarithms with spectra contained in S.

Theorem 3.1. Let X be a normal operator in $\mathcal{B}(\mathcal{H})$. Assume that $\sigma(X) \subseteq \mathcal{S}$ and $e^X = e^Y$.

- i) If Y is normal in $\mathcal{B}(\mathcal{H})$ and $\sigma(Y) \subseteq \mathcal{S}$, then |X| = |Y|.
- ii) If $Y \in \mathcal{B}(\mathcal{H})$, then |X|Y = Y|X|.

Proof. i) We will prove that the spectral measures of $|\operatorname{Im}(X)|$ and $|\operatorname{Im}(Y)|$ coincide. Let us set $A = \operatorname{Im}(X)$ and $B = \operatorname{Im}(Y)$. Given $\Omega \subseteq [0, \pi)$, put $\Omega' = \{x \in \mathbb{R} : |x| \in \Omega\}$. Note that $\mathbb{R} + i\Omega' \subseteq S^{\circ}$. As an application of Lemma 2.1 and Lemma 2.3, we see that

$$E_{|A|}(\Omega) = E_A(\Omega') = E_X(\mathbb{R} + i\Omega') = E_Y(\mathbb{R} + i\Omega') = E_B(\Omega') = E_{|B|}(\Omega).$$

By Remark 2.4, we have

$$E_{|A|}(\{\pi\}) = E_A(\{-\pi, \pi\}) = E_X(\mathbb{R} - i\pi) + E_X(\mathbb{R} + i\pi)$$

= $E_Y(\mathbb{R} - i\pi) + E_Y(\mathbb{R} + i\pi) = E_{|B|}(\{\pi\}).$

Thus, we have proved $E_{|A|} = E_{|B|}$, which implies that |A| = |B|. On the other hand, by Lemma 2.2, we know that Re(X) = Re(Y). Therefore

$$|X|^2 = \operatorname{Re}(X)^2 + |A|^2 = \operatorname{Re}(Y)^2 + |B|^2 = |Y|^2.$$

Hence |X| = |Y|, and the proof is complete.

ii) Since X is a normal operator, $e^X = e^Y$ is also a normal operator. Then by a result by S. Kurepa (see Theorem 2.5), there exist operators N_0 and W such that N_0 is normal, $e^X = e^{N_0}$, W commutes with N_0 and $Y = N_0 + 2\pi i W$. In fact, N_0 can be defined using the Borel functional calculus by $N_0 = \log(e^X)$, where \log is the principal branch of the logarithm. In particular, this implies that $\sigma(N_0) \subseteq \mathcal{S}$. Now we can apply i) to find that $|N_0| = |X|$. Since $N_0 W = W N_0$, we have $|N_0|W = W |N_0|$, and this gives W|X| = |X|W. Hence |X|Y = Y|X|.

Following similar arguments, we can give an alternative proof of a result by Ch. Schmoeger ([6, Theorem 3]). This result was originally proved using inner derivations. Note that a minor improvement on the assumption on $\sigma(X)$ over the boundary ∂S of the strip S can now be done. Given a set $\Omega \subseteq \mathbb{C}$, we denote by $\bar{\Omega}$ the set $\{x - iy : x + iy \in \Omega\}$.

Corollary 3.2. Let X be a normal operator in $\mathcal{B}(\mathcal{H})$, $\sigma(X) \subseteq \mathcal{S}$, $Y \in \mathcal{B}(\mathcal{H})$ and $e^X = e^Y$. Suppose that for every Borel subset $\Omega \subseteq \partial \mathcal{S} \setminus \{-i\pi, i\pi\}$, it holds that $E_X(\bar{\Omega}) = 0$, whenever $E_X(\Omega) \neq 0$. Then $X^2Y = YX^2$.

Proof. We will show that $E_{X^2}(\Omega_0)$ commutes with Y for every Borel subset $\Omega_0 \subseteq \sigma(X^2)$. From the equation $e^X = e^Y$, we have $e^X Y = Y e^X$, and thus, $E_{e^X}(\Omega)Y = Y E_{e^X}(\Omega)$ for any Borel set Ω . Since the set Ω is arbitrary, by Lemma 2.1 we get

- 1. $E_X(\Omega')Y = YE_X(\Omega')$ for every subset $\Omega' \subseteq \mathcal{S}^{\circ}$.
- 2. $(E_X(\Omega') + E_X(\bar{\Omega}'))Y = Y(E_X(\Omega') + E_X(\bar{\Omega}'))$, whenever $\Omega' \subseteq \partial S$.

On the other hand, the image of S by the analytic map $f(z) = z^2$ is given by

$$f(S) = \{ u \pm i2t\sqrt{u+t^2} : u \in [-\pi^2, \infty), u+t^2 \ge 0 \}.$$

Let us write $f^{-1}(\Omega_0) = \Omega_- \cup \Omega_+$, where $\Omega_- = f^{-1}(\Omega_0) \cap \{z \in \mathbb{C} : \operatorname{Re}(z) < 0\}$ and $\Omega_+ = f^{-1}(\Omega_0) \cap \{z \in \mathbb{C} : \operatorname{Re}(z) \geq 0\}$. We point out that $E_{X^2}(\Omega_0) = E_X(\Omega_+) + E_X(\Omega_-)$.

Next we need to consider three cases. In the case in which $\Omega_0 \subseteq f(\mathcal{S})^\circ$, then $\Omega_+ \subseteq \mathcal{S}^\circ$ and $\Omega_- \subseteq \mathcal{S}^\circ$. By the item 1. above we have $E_{X^2}(\Omega_0)Y = YE_{X^2}(\Omega_0)$. In the case where $\Omega_0 \subseteq \partial f(\mathcal{S}) \setminus \{-\pi^2\}$, we have that $\Omega_+ \subseteq \partial \mathcal{S} \cap \{z \in \mathbb{C} : \operatorname{Re}(z) > 0\}$. It follows that either $E_X(\Omega_+) = 0$ or $E_X(\bar{\Omega}_+) = 0$ by our assumption on the spectral measure of X. Similarly, it must be either $E_X(\Omega_-) = 0$ or $E_X(\bar{\Omega}_-) = 0$. Therefore item 2. above reduces to the desired conclusion, i.e. $E_{X^2}(\Omega_0)Y = YE_{X^2}(\Omega_0)$. Finally, if $\Omega_0 = \{-\pi^2\}$, then $E_{X^2}(\Omega_0) = E_X(\{-i\pi\}) + E_X(\{i\pi\})$ commutes with Y by item 2., and this concludes the proof.

4 Difference of logarithms

Let X, Y be normal operators and $k \in \mathbb{Z}$. In order to avoid lengthly formulas, let us fix a notation for some special spectral projections of these operators:

- $P_{2k+1} = E_X(\mathbb{R} + i((2k-1)\pi, (2k+1)\pi));$
- $Q_{2k+1} = E_Y(\mathbb{R} + i((2k-1)\pi, (2k+1)\pi));$
- $E_{2k+1} = E_X(\mathbb{R} + i(2k+1)\pi);$
- $F_{2k+1} = E_Y(\mathbb{R} + i(2k+1)\pi).$

As we have pointed out in the introduction, E. Hille showed that the difference between two logarithms in Banach algebras may be expressed as the sum of multiples of projections (see [1, Theorem 4]). In order to prove that result, the spectrum of one of the logarithms must be incongruent (mod $2\pi i$). In the case where X and Y are both normal logarithms on a Hilbert space, the spectral theorem can be used to provide a more general formula.

Theorem 4.1. Let X and Y be normal operators in $\mathcal{B}(\mathcal{H})$ such that $e^X = e^Y$. If $\sigma(X)$ and $\sigma(Y)$ are contained in $\mathbb{R} + i[(2k_0 + 1)\pi, (2k_1 + 1)\pi]$ for some $k_0, k_1 \in \mathbb{Z}$, then

$$X - Y = \sum_{k=k_0}^{k_1} \left(2k\pi i \left(P_{2k+1} - Q_{2k+1} \right) + (2k+1)\pi i \left(E_{2k+1} - F_{2k+1} \right) \right).$$

Proof. We first suppose that $\sigma(X)$ and $\sigma(Y)$ are contained in the strip \mathcal{S} . Then we have $\operatorname{Im}(X) = \operatorname{Im}(X)(E_X(\mathcal{S}^\circ) + E_X(\mathbb{R} + i\pi) + E_X(\mathbb{R} - i\pi)) = \operatorname{Im}(X)P_1 + \pi E_1 - \pi E_{-1}$. Analogously, $\operatorname{Im}(Y) = \operatorname{Im}(Y)Q_1 + \pi F_1 - \pi F_{-1}$. By Lemma 2.3, we know that $\operatorname{Re}(X) = \operatorname{Re}(Y)$ and $E_X(\Omega) = E_Y(\Omega)$ for every Borel subset Ω of \mathcal{S}° . It follows that

$$\operatorname{Im}(X)P_1 = \int_{S^{\circ}} \operatorname{Im}(z) dE_X(z) = \int_{S^{\circ}} \operatorname{Im}(z) dE_Y(z) = \operatorname{Im}(Y)Q_1,$$

which implies

$$X - Y = \pi i (E_1 - F_1) - \pi i (E_{-1} - F_{-1}). \tag{1}$$

Thus, we have proved the formula in this case. For the general case, without restrictions on spectrum of X and Y, we need to consider the following Borel measurable function

$$f(t) = \sum_{k=k_0-1}^{k_1} (t - 2k\pi) \chi_{((2k-1)\pi,(2k+1)\pi]}(t),$$

where $\chi_I(t)$ is the characteristic function of the interval I. Set A = Im(X) and B = Im(Y). By Lemma 2.2, Re(X) = Re(Y), and since the real and imaginary part of X and Y commute because X and Y are normal, $e^{iA} = e^X e^{-\text{Re}(X)} = e^Y e^{-\text{Re}(Y)} = e^{iB}$. The function f satisfies

 $e^{if(t)}=e^{it}$, which implies that $e^{if(A)}=e^{iA}=e^{iB}=e^{if(B)}$. Since $\sigma(f(A))$ and $\sigma(f(B))$ are contained in $[-\pi,\pi]$, we can replace in equation (1) to find that

$$f(A) - f(B) = \pi \left(E_{f(A)}(\{\pi\}) - E_{f(B)}(\{\pi\}) \right)$$

$$= \pi \sum_{k=k_0-1}^{k_1} \left(E_A(\{(2k+1)\pi\}) - E_B(\{(2k+1)\pi\}) \right)$$

$$= \pi \sum_{k=k_0}^{k_1} \left(E_{2k+1} - F_{2k+1} \right). \tag{2}$$

Here we have used Lemma 2.1 to express $E_{f(A)}$, E_A and $E_{f(B)}$, E_B in terms of E_X and E_Y respectively. In particular, note that $E_{f(A)}(\{-\pi\}) = E_{f(B)}(\{-\pi\}) = 0$. On the other hand, we have

1.
$$f(A) = \sum_{k=k_0-1}^{k_1} (A - 2k\pi) \chi_{((2k-1)\pi,(2k+1)\pi]}(A) = A - \sum_{k=k_0}^{k_1} 2k\pi (P_{2k+1} + E_{2k+1}),$$

2.
$$f(B) = B - \sum_{k=k_0}^{k_1} 2k\pi (Q_{2k+1} + F_{2k+1}).$$

Therefore

$$X - Y = i(A - B)$$

$$= i(f(A) - f(B)) + \sum_{k=0}^{k_1} (2k\pi i(P_{2k+1} - Q_{2k+1}) + 2k\pi i(E_{2k+1} - F_{2k+1})).$$

Combining this with the expression in (2), we get the desired formula.

Below we give a generalization of another result due to Ch. Schmoeger (see [6, Theorem 5]). The assumptions on the spectrum of X and Y were more restrictive in [6]: $||X|| \leq \pi$, $||Y|| \leq \pi$ and either $-i\pi$ or $i\pi$ does not belong to the point spectrum of one of these operators. However, these hypothesis were necessary to conclude that X-Y is a multiple of a projection; meanwhile XY = YX can be obtained under more general assumptions (see [6, Theorem 3], [5, Theorem 1.4] and [3, Theorem 9]).

Corollary 4.2. Let X, Y be normal operators in $\mathcal{B}(\mathcal{H})$. Assume that $\sigma(X) \subseteq \mathcal{S}$, $\sigma(Y) \subseteq \mathcal{S}$ and $e^X = e^Y$. The following assertions hold:

- i) If $E_1 = 0$, then XY = YX and $X Y = -2\pi i F_1$.
- ii) If $E_{-1} = 0$, then XY = YX and $X Y = 2\pi i F_{-1}$.
- iii) If $E_1 = E_{-1} = 0$, then X = Y.

Proof. i) Under these assumptions on the spectra of X and Y, we have established that $E_{-1} + E_1 = F_{-1} + F_1$ in Remark 2.4. On the other hand, by equation (1) in the proof of Theorem 4.1, we know that $X - Y = \pi i (E_1 - F_1) - \pi i (E_{-1} - F_{-1})$. Since $E_1 = 0$, we have $E_{-1} = F_1 + F_{-1}$. It follows that $X = -2\pi i F_1 + Y$. Hence X and Y commute. We can similarly conclude that ii holds true. To prove iii, note that $E_1 = E_{-1} = 0$ implies that $F_1 + F_{-1} = 0$, and consequently, $F_1 = F_{-1} = 0$. Hence we get X = Y.

5 Unbounded logarithms

Let X be a self-adjoint unbounded operator on \mathcal{H} . As before, E_X denotes the spectral measure of X. In item i) of our next result, we will give a version of [5, Theorem 1.4] for unbounded operators (see also [3, Theorem 9]). To this end, we extend the definition given in [5] for bounded operators: a self-adjoint unbounded operator X is generalized 2π -congruence-free if

$$E_X(\sigma(X) \cap \sigma(X + 2k\pi)) = 0, \quad k = \pm 1, \pm 2, \dots$$

Given $Y \in \mathcal{B}(\mathcal{H})$, the commutant of Y is the set

$$\{Y\}' = \{Z \in \mathcal{B}(\mathcal{H}) : ZY = YZ\}.$$

The double commutant of Y is defined by

$$\{Y\}'' = \{W \in \mathcal{B}(\mathcal{H}) : WZ = ZW, \text{ for all } Z \in \{Y\}'\}.$$

If X is a self-adjoint unbounded operator and $Y \in \mathcal{B}(\mathcal{H})$, recall that XY = YX, that is X commutes with Y, if $YE_X(\Omega) = E_X(\Omega)Y$ for every Borel subset $\Omega \subseteq \mathbb{R}$. Recall that the exponential e^{iX} of a self-adjoint unbounded operator X is a unitary operator, which can be defined via the Borel functional calculus (see e.g. [4]).

Theorem 5.1. Let X be a self-adjoint operator on \mathcal{H} and $Y \in \mathcal{B}(\mathcal{H})$ such that $e^{iX} = e^{Y}$.

- i) If X is generalized 2π -congruence-free, then $E_X(\Omega) \in \{Y\}''$ for all Borel subsets Ω of \mathbb{R} . In particular, XY = YX.
- ii) If $\{(2k+1)\pi : k \in \mathbb{Z}\} \cap \sigma_p(X)$ has at most one element and Y is normal in $\mathcal{B}(\mathcal{H})$ such that $\sigma(Y) \subseteq \mathcal{S}$, then XY = YX.
- iii) If $(2k+1)\pi \notin \sigma_p(X)$ for all $k \in \mathbb{Z}$ and Y is normal in $\mathcal{B}(\mathcal{H})$ such that $\sigma(Y) \subseteq \mathcal{S}$, then $Y \in \{e^{iX}\}''$.

Proof. i) Let $Z \in \mathcal{B}(\mathcal{H})$ such that ZY = YZ. It follows that $Ze^Y = e^YZ$. Then we have $Ze^{iX} = e^{iX}Z$, and by Lemma 2.1, $ZE_X(\exp^{-1}(\Omega)) = E_X(\exp^{-1}(\Omega))Z$ for every $\Omega \subseteq \mathbb{T}$. If $\Omega' = \exp^{-1}(\Omega) \cap [-\pi, \pi]$, then

$$E_X(\exp^{-1}(\Omega)) = \sum_{k \in \mathbb{Z}} E_X(\Omega' + 2k\pi),$$

where this series converges in the strong operator topology. Suppose now that there is some $k \in \mathbb{Z}$ such that $E_X(\Omega' + 2k\pi) \neq 0$. It follows that $\sigma(X) \cap (\Omega' + 2k\pi) \neq \emptyset$, and $(\Omega' + 2l\pi) \cap \sigma(X) \subseteq \sigma(X) \cap \sigma(X + 2(l-k)\pi)$ for all $l \in \mathbb{Z}$. By the assumption on the spectral measure of X, $E_X(\Omega' + 2l\pi) \leq E_X(\sigma(X) \cap \sigma(X + 2(l-k)\pi)) = 0$ for $l \neq k$. Therefore for each Ω , the above series reduces to only one spectral projection corresponding to a set of the form $\Omega' + 2k\pi$. Hence Z commutes with all the spectral projections of X.

ii) We need to consider the Borel measurable function f defined in the proof of Theorem 4.1. Since $e^{iX}=e^Y$, we have that $e^{if(X)}=e^Y$. Recall that $E_X(\{(2k+1)\pi\})\neq 0$ if and only if $(2k+1)\pi\in\sigma_p(X)$ ([4, Theorem 12.19]). By the hypothesis on the eigenvalues of X, there is at most one $n_0\in\mathbb{Z}$ such that $E_X(\{(2n_0+1)\pi\})\neq 0$. According to Lemma 2.1, we get

$$E_{f(X)}(\{ \pi \}) = \sum_{k \in \mathbb{Z}} E_X(\{ (2k+1)\pi \}) = E_X(\{ (2n_0+1)\pi \}).$$

On the other hand, $E_{f(X)}(\{-\pi\}) = 0$ for all $k \in \mathbb{Z}$ by definition of the function f. According to Corollary 4.2 ii), it follows that $if(X) = Y + 2\pi i F_{-1}$. By Remark 2.4, we also know that

 $E_X(\{(2n_0+1)\pi\}) = F_{-1} + F_1$. In order to show that Y commutes with all the spectral projections of X, we divide into two cases. If $\Omega \subseteq \mathbb{C} \setminus \{(2k+1)\pi : k \in \mathbb{Z}\}$, note that $E_X(\Omega)F_{-1} = 0$ because $F_{-1} \leq E_X(\{(2n_0+1)\pi\})$. Hence we get

$$E_X(\Omega)Y = E_X(\Omega)(if(X) - 2\pi i F_{-1}) = iE_X(\Omega)f(X) = if(X)E_X(\Omega) = YE_X(\Omega).$$

If $\Omega \subseteq \{(2k+1)\pi : k \in \mathbb{Z}\}$, we only need to prove that $E_X(\{(2n_0+1)\pi\})$ commutes with Y. This follows immediately, because $E_X(\{(2n_0+1)\pi\})$ is the sum of two spectral projections of Y.

iii) As in the proof of ii), we have $e^{if(X)} = e^{Y}$. Now by the assumption on the eigenvalues of X, it follows that

$$E_{f(X)}(\{-\pi, \pi\}) = \sum_{k \in \mathbb{Z}} E_X(\{(2k+1)\pi\}) = 0.$$
 (3)

Applying Corollary 4.2 iii), we get if(X) = Y. Recall that f(X) is a self-adjoint operator such that $\sigma(f(X)) \subseteq [-\pi, \pi]$.

Let $Z \in \mathcal{B}(\mathcal{H})$ such that $Ze^{iX} = e^{iX}Z$. Then we have $ZE_{e^{iX}}(\Omega) = E_{e^{iX}}(\Omega)Z$ for every Borel set $\Omega \subseteq \mathbb{T}$. We are going to show that $ZE_{f(X)}(\Omega') = E_{f(X)}(\Omega')Z$ for every $\Omega' \subseteq [-\pi, \pi]$. We need to consider two cases. If $\Omega' \subseteq (-\pi, \pi)$, there exists a unique set $\Omega \subseteq \mathbb{T} \setminus \{-1\}$ such that $\exp^{-1}(\Omega) \cap [-\pi, \pi] = \Omega'$. Therefore

$$E_{f(X)}(\Omega') = \sum_{k \in \mathbb{Z}} E_X(\Omega' + 2k\pi) = E_X(\exp^{-1}(\Omega)) = E_{e^{iX}}(\Omega).$$

If $\Omega' \subseteq \{-\pi, \pi\}$, by equation (3) we find that $E_{f(X)}(\Omega') = 0$. Hence we obtain that Z commutes with every spectral projection of f(X). The latter is equivalent to saying that Z commute with Y, and this concludes the proof.

Acknowledgment

I would like to thank Esteban Andruchow and Gabriel Larotonda for suggesting me to prove Theorem 3.1 i). I am also grateful to them for several helpful conversations.

References

- [1] E. Hille, On Roots and logarithms of elements of a complex Banach algebra, Math. Ann. 136 (1958), 46-57.
- [2] S. Kurepa, A NOTE ON LOGARITHMS OF NORMAL OPERATORS, Proc. Amer. Math. Soc. 13 (1962), 307-311.
- [3] F. C. Paliogiannis, On COMMUTING OPERATOR EXPONENTIALS, Proc. Amer. Math. Soc. 131 (2003), no. 12, 3777-3781.
- [4] W. Rudin, Functional Analysis, McGraw-Hill, New York (1974).
- [5] Ch. Schmoeger, On NORMAL OPERATOR EXPONENTIALS, Proc. Amer. Math. Soc. 130 (2001), no. 3, 697-702.
- [6] Ch. Schmoeger, On the operator equation $e^A=e^B$, Linear Algebra Appl. 359 (2003), 169-179.

DEPARTAMENTO DE DE MATEMÁTICA, FCE-UNLP, CALLES 50 Y 115, (1900) LA PLATA, ARGENTINA AND INSTITUTO ARGENTINO DE MATEMÁTICA, 'ALBERTO P. CALDERÓN', CONICET, SAAVEDRA 15 3ER. PISO, (1083) BUENOS AIRES, ARGENTINA. e-mail: eduardo@mate.unlp.edu.ar