A note on a question by T. Ando

E. Andruchow

October 10, 2012

Abstract

In 1979 T. Ando posed the following question: suppose E and F are two projection valued measures defined on an algebra Σ of subsets of Ω , which verify

$$||E(\Delta) - F(\Delta)|| \le 1 - \delta, \ \Delta \in \Sigma,$$

for some $\delta > 0$. Does there exist a unitary operator u such that $u^*E(\Delta)u = F(\Delta)$ for all $\Delta \in \Sigma$? He knew that the answer was affirmative if both measures were strongly σ -additive and maximal (i.e. E and F have ciclic vectors). In this note, we show that the answer is also affirmative if both measures take values in a common finite von Neumann algebra.

2010 MSC: 47B15, 47C15.

Keywords: Spectral measure, unitary equivalence, finite algebra.

1 Introduction

In 1979, at the Proceedings of the Fourth Conference on Operator Theory in Timisoara [1], Prof. T. Ando posed the following question:

Suppose that E and F are two projection-valued spectral measures in $\mathcal{B}(\mathcal{H})$, defined on a common σ -algebra Σ of subsets of Ω , such that there exists $\delta > 0$ verifying that

$$||E(\Delta) - F(\Delta)|| < 1 - \delta,$$

for all $\Delta \in \Sigma$.

Question: does there exist a unitary operator u in $\mathcal{B}(\mathcal{H})$ such that

$$F(\Delta) = u^* E(\Delta) u,$$

for all $\Delta \in \Sigma$?

The purpose of this note is to renew the atention to this question, which as far as we know, remains unanswered. In [1], Prof. T. Ando knew that the answer is positive if both measures are strongly σ -additive and maximal. A spectral measure E is maximal if any projection $p \in \mathcal{B}(\mathcal{H})$ which satisifes that $pE(\Delta) = E(\Delta)p$ for all $\Delta \in \Sigma$, is a spectral projection: $p = E(\Delta_p)$ for some $\Delta_p \in \Sigma$. Back in 1975 he also knew that the answer is positive if $\gamma \geq \frac{1}{\sqrt{2}}$ [2]. In [3] it was shown a weaker result, namely that the assertion is true for $\gamma = \frac{1}{2}$.

In this note we give an affirmative answer for this question, in an elementary fashion, in other particular cases. For instance, when both measures E and F take values in a common finite von Neumann.

Let \mathcal{M} denote a von Neumann algebra with a finite normal and faithful tracial state τ . Let $\mathcal{H} = L^2(\mathcal{M}, \tau)$. We shall consider that $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$, and will denote by $\| \ \|_2$ the norm of \mathcal{H} . Note that any $a \in \mathcal{M}$ can be regarded as a vector in \mathcal{H} , and in that case $\|a\|_2 = \tau(a^*a)^{1/2}$. A spectral measure E in Ω is a map

$$E: \Sigma \to \mathcal{B}(\mathcal{H})$$
.

such that $E(\Delta)$ is an orthogonal projection in \mathcal{H} , $E(\emptyset) = 0$, $E(\Omega) = 1$,

$$E(\Delta \cap \Delta') = E(\Delta)E(\Delta') = E(\Delta')E(\Delta),$$

and E is additive: if $\Delta, \Delta' \in \Sigma$ are disjoint, then

$$E(\Delta \cup \Delta) = E(\Delta) + E(\Delta').$$

We say that E is strongly σ -additive, if for any countable family Δ_k , $k \geq 1$ of disjoint elements in Σ , then for each $\xi \in \mathcal{H}$,

$$E(\cup_{k\geq 1}\Delta_k)\xi = \sum_{k\geq 1}E(\Delta_k)\xi.$$

Finally, we say that E is \mathcal{M} -valued if $E(\Delta) \in \mathcal{M}$ for all $\Delta \in \Sigma$.

2 \mathcal{M} -valued measures

Let π be a (finite) partition of Ω , i.e. $\pi = \{\Delta_1, \ldots, \Delta_n\}$, where $\Delta_i \in \Sigma$, $\Delta_i \cap \Delta_j = \emptyset$ if $i \neq j$, and $\bigcup_{i=1}^n \Delta_i = \Omega$. Let E, F be two spectral measures, and denote by $g_{\pi}^{E,F}$, or shortly $g_{\pi} \in \mathcal{B}(\mathcal{H})$ the element

$$g_{\pi} = \sum_{i=1}^{n} E(\Delta_i) F(\Delta_i).$$

The following result is well-known. We include the proof, which is elementary.

Lemma 2.1. If $||E(\Delta) - F(\Delta)|| < 1$ for all $\Delta \in \Sigma$, then g_{π} is invertible.

Proof. Note that

$$g_{\pi}g_{\pi}^* = \sum_{i=1}^n E(\Delta_i)F(\Delta_i)\sum_{i=1}^n F(\Delta_j)E(\Delta_j) = \sum_{i=1}^n E(\Delta_i)F(\Delta_i)E(\Delta_i).$$

Each operator $E(\Delta_i)F(\Delta_i)E(\Delta_i)$ can be regarded as an operator in $R(E(\Delta_i))$, the range of $E(\Delta_i)$. Note that it is an invertible operator there:

$$||E(\Delta_i)F(\Delta_i)E(\Delta_i) - E(\Delta_i)|| = ||E(\Delta_i)(F(\Delta_i) - E(\Delta_i))E(\Delta_i)|| \le ||F(\Delta_i) - E(\Delta_i)|| < 1.$$

Since $E(\Delta_i)$ is the identity operator in $R(E(\Delta_i))$, our claim follows. Note that the spaces $R(E(\Delta_i))$ are mutually orthogonal, and their sum is \mathcal{H} . It follows that $g_{\pi}g_{\pi}^*$ is invertible. Analogously $g_{\pi}^*g_{\pi}$ is also invertible. It follows that g_{π} is invertible.

Given E and F, we can regard g_{π} as a net of elements in $\mathcal{B}(\mathcal{H})$, indexed in the set Π of finite partitions of Ω . A natural partial order in Π is given by $\pi' \geq \pi$ if every subset Δ' in π' is contained in a subset Δ in π .

Remark 2.2. If there exists $\delta > 0$ such that $||E(\Delta) - F(\Delta)|| \le 1 - \delta$ for all $\Delta \in \Sigma$, then, with the same computation as in the above lemma,

$$||g_{\pi}g_{\pi}^* - 1|| \le 1 - \delta, \quad ||g_{\pi}^*g_{\pi} - 1|| \le 1 - \delta.$$

Indeed,

$$g_{\pi}g_{\pi}^* - 1 = \sum_{i=1}^n E(\Delta_i)[F(\Delta_i) - E(\Delta_i)]E(\Delta_i),$$

so that

$$||g_{\pi}g_{\pi}^* - 1|| = \max_{1 \le i \le n} ||F(\Delta_i) - E(\Delta_i)|| \le 1 - \delta,$$

and similarly for $g_{\pi}^*g_{\pi}$.

It is apparent that

$$\|g_{\pi}\| = \|g_{\pi}^* g_{\pi}\|^{1/2} = \|\sum_{i=1}^n F(\Delta_i) E(\Delta_i) F(\Delta_i)\|^{1/2} = \max_{1 \le i \le n} \|F(\Delta_i) E(\Delta_i) F(\Delta_i)\|^{1/2} \le 1.$$

Therefore,

Lemma 2.3. There exists a directed set Π_0 of partitions of Ω such that the subnets $\{g_{\pi}\}_{\pi \in \Pi_0}$, $\{g_{\pi}g_{\pi}^*\}_{\pi \in \Pi_0}$ and $\{g_{\pi}^*g_{\pi}\}_{\pi \in \Pi_0}$ converge, respectively, to elements a, b and c in $\mathcal{B}(\mathcal{H})$, in the weak operator topology. If E and F are \mathcal{M} -valued, then $a,b,c \in \mathcal{M}$. Moreover, $||a||,||b||,||c|| \leq 1$. If additionally there exists $0 < \delta < 1$ such that

$$||E(\Delta) - F(\Delta)|| \le 1 - \delta$$

for all $\Delta \in \Sigma$, then b and c are positive and invertible

Proof. Since the unit ball of $\mathcal{B}(\mathcal{H})$ is compact in the weak operator topology, there exists a convergent subnet of g_{π} . There exists a subnet of this subnet such that $g_{\pi}^*g_{\pi}$ converges, etc. Clearly, the limits a,b and c belong to the unit ball of \mathcal{M} . If there exists δ with the above mentioned property, by the remark above, the net $g_{\pi}g_{\pi}^*-1$ converges to the element b-1, which belongs to the ball of radius $1-\delta$, and therefore b is invertible. Similarly for c.

Remark 2.4. Suppose that E and F are \mathcal{M} -valued. Note that

$$\tau(g_{\pi}g_{\pi}^{*}) = \tau(g_{\pi}^{*}g_{\pi}) = \sum_{i=1}^{n} \tau(E(\Delta_{i})F(\Delta_{i})E(\Delta_{i})) = \sum_{i=1}^{n} \tau(E(\Delta_{i})F(\Delta_{i})) = \tau(g_{\pi}).$$

Moreover, if the net $\{g_{\pi}\}$ is convergent in the weak operator topology, then the net $\{\tau(g_{\pi})\}$ is convergent. Indeed, if we denote by 1 the unit element of \mathcal{M} regarded as a vector in \mathcal{H} :

$$\tau(g_{\pi}) = \langle g_{\pi}1, 1 \rangle \rightarrow \langle a1, 1 \rangle = \tau(a),$$

and similarly for $g_{\pi}^*g_{\pi}$ and $g_{\pi}g_{\pi}^*$. Therefore, for any limit elements a, b, c obtained as above, one has $\tau(a) = \tau(b) = \tau(c) > 0$.

In what follows, we fix the directed set Π_0 , such that all three subnets $\{g_{\pi}\}_{\pi \in \Pi_0}$, $\{g_{\pi}g_{\pi}^*\}_{\pi \in \Pi_0}$ and $\{g_{\pi}^*g_{\pi}\}_{\pi \in \Pi_0}$ converge to a, b and c, in the weak operator topology.

Lemma 2.5. If E and F are M-valued, then $||g_{\pi} - a||_2 \to 0$.

Proof. Suppose that $\pi = \{\Delta_i\}$ and $\pi' = \{\Delta_i'\}$ are two partitions in Π_0 such that $\pi' \geq \pi$. Then

$$\tau(g_{\pi}^*g_{\pi'}) = \sum_{i,j} \tau(F(\Delta_i)E(\Delta_i)E(\Delta_j')F(\Delta_j'))$$

$$= \sum_{i} \left(\sum_{j: \Delta'_{i} \subset \Delta_{i}} \tau(F(\Delta'_{j})E(\Delta'_{j})) \right) = \tau(g_{\pi'}^{*}) = \tau(g_{\pi'}).$$

Given $\epsilon > 0$, let π_{ϵ} be a partition in Π_0 such that for all $\pi \geq \pi_{\epsilon}$, $|\tau(g_{\pi}) - \tau(g_{\pi_{\epsilon}})| < \epsilon$. Then, if π , π' are two partitions finer than π_{ϵ} ,

$$||g_{\pi} - g_{\pi'}||_2 \le ||g_{\pi} - g_{\pi_{\epsilon}}||_2 + ||g_{\pi_{\epsilon}} - g_{\pi'}||_2,$$

and, by the above computation

$$\|g_{\pi} - g_{\pi_{\epsilon}}\|_{2}^{2} = \tau(g_{\pi}^{*}g_{\pi}) + \tau(g_{\pi_{\epsilon}}^{*}g_{\pi_{\epsilon}}) - \tau(g_{\pi}^{*}g_{\pi_{\epsilon}}) - \tau(g_{\pi_{\epsilon}}^{*}g_{\pi}) = \tau(g_{\pi}) - \tau(g_{\pi_{\epsilon}}) < \epsilon.$$

Analogously for the other term. Then for $\pi, \pi' \geq \pi_{\epsilon}$,

$$||g_{\pi} - g_{\pi'}||_2 \le 2\sqrt{\epsilon}.$$

Thus $\{g_{\pi}\}$ is a Cauchy net in \mathcal{H} , and converges to an element in \mathcal{H} . On the other hand this net converges in the weak operator topology to a.

Note that also $||g_{\pi}^* - a^*||_2 \to 0$.

Corollary 2.6. With the current assumptions and notations, $aa^* = b$ and $a^*a = c$. In particular, $a \in \mathcal{M}$ is invertible.

Proof. Note that

$$||g_{\pi}g_{\pi}^{*} - aa^{*}||_{2} \le ||g_{\pi}g_{\pi}^{*} - g_{\pi}a^{*}||_{2} + ||g_{\pi}a^{*} - aa^{*}||_{2} \le ||g_{\pi}|| ||g_{\pi}^{*} - a^{*}||_{2} + ||g_{\pi} - a||_{2} ||a^{*}||$$

$$\le ||g_{\pi}^{*} - a^{*}||_{2} + ||g_{\pi} - a||_{2}.$$

Thus $aa^* = b$. Analogously $a^*a = c$.

Theorem 2.7. Let E and F be two operator valued spectral measures, with values in a finite von Neumann algebra \mathcal{M} . Suppose that there exists $\delta > 0$ verifying that

$$||E(\Delta) - F(\Delta)|| \le 1 - \delta,$$

for all $\Delta \in \Sigma$. Then there exists a unitary element $u \in \mathcal{M}$ such that

$$F(\Delta) = u^* E(\Delta) u$$
,

for all $\Delta \in \Sigma$.

Proof. Pick $\Delta \in \Sigma$. Consider the partition $P = \{\Delta, \Omega \setminus \Delta\}$. There exists a partition $\pi_0 \in \Pi_0$ such that $\pi_0 \geq P$. Then

$$g_{\pi_0}F(\Delta) = \sum_i E(\Delta_i)F(\Delta_i)F(\Delta) = \sum_{\Delta_i \subset \Delta} E(\Delta_i)F(\Delta_i).$$

Analogously,

$$E(\Delta)g_{\pi_0} = \sum_{\Delta_i \subset \Delta} E(\Delta_i)F(\Delta_i).$$

Thus $g_{\pi_0}F(\Delta) = E(\Delta)g_{\pi_0}$. Apparently this also holds for any $\pi \in \Pi_0$ such that $\pi \geq \pi_0$ Taking limits, $aF(\Delta) = E(\Delta)a$. Thus $a^*E(\Delta) = F(\Delta)a^*$, and therefore a^*a commutes with $F(\Delta)$. Note that by the previous result, a is invertible. Let u be the unitary part in the polar decomposition of a: a = u|a|. Note that $|a| = (a^*a)^{1/2}$ commutes with $F(\Delta)$ for all $\Delta \in \Sigma$. Then $u = a|a|^{-1} \in \mathcal{M}$ verifies

$$uF(\Delta) = a|a|^{-1}F(\Delta) = aF(\Delta)|a|^{-1} = E(\Delta)a|a|^{-1} = E(\Delta)u.$$

3 Non finite case

The above ideas can be used to prove a partial result in the general $\mathcal{B}(\mathcal{H})$ -valued case. With the current notations and assumptions (namely: $||E(\Delta) - F(\Delta)|| < 1 - \delta$ for some $\delta > 0$ and every $\Delta \in \Sigma$, and the directed set of partitions Π_0 is fixed such that for $\pi \in \Pi_0$, g_{π} , $g_{\pi}^* g_{\pi}$ and $g_{\pi} g_{\pi}^*$ converge to a, b and c in the weak operator topology). As in the proof of the above theorem, it suffices to show that a is invertible. Let us still denote with $|| \cdot ||_2$ the norm of \mathcal{H} . Note that for any vector $\xi \in \mathcal{H}$,

$$0 \le \|g_{\pi}\xi - a\xi\|_{2}^{2} = \langle g_{\pi}^{*}g_{\pi}\xi, \xi \rangle + \langle a\xi, a\xi \rangle - \langle g_{\pi}\xi, a\xi \rangle - \langle a\xi, g_{\pi}\xi \rangle$$

converges to $< b\xi, \xi > - < a^*a\xi, \xi >$. It follows that $a^*a \le b$. Analogously, $aa^* \le c$. The following result can be regarded as a generalization of the theorem in the previous section.

Lemma 3.1. Suppose that there exists a trace class positive operator h, with zero kernel, which commutes with E (i.e. $hE(\Delta) = E(\Delta)h$ for all $\Delta \in \Sigma$). Then $aa^* = c$, and thus there exists a co-isometry v such that $v^*E(\Delta)v = F(\Delta)$.

Proof. Denote with Tr the usual trace of $\mathcal{B}(\mathcal{H})$. We may normalize h so that Tr(h) = 1. Let $\varphi = Tr(h\cdot)$. Note that φ is a faithful normal state in $\mathcal{B}(\mathcal{H})$, and that the spectral measure E lies in the centralizer of φ ,

$$\varphi(xE(\Delta)) = Tr(hxE(\Delta)) = Tr(E(\Delta)hx) = Tr(hE(\Delta)x) = \varphi(E(\Delta)x),$$

for all $x \in \mathcal{B}(\mathcal{H})$. Then an argument similar to the one in Lemma 2.5 can be carried out. Namely, if π' is finer than π ,

$$\varphi(g_{\pi}g_{\pi'}^*) = \sum_{i,j} \varphi(E(\Delta_i)F(\Delta_i)F(\Delta_j')E(\Delta_j')) = \sum_i \left(\sum_{\Delta_j' \subset \Delta_i} \varphi(E(\Delta_i)F(\Delta_i)F(\Delta_j')E(\Delta_j'))\right)$$

$$= \sum_{i} \left(\sum_{\Delta'_{i} \subset \Delta_{i}} \varphi(E(\Delta'_{j})F(\Delta'_{j})) \right) = \varphi(g_{\pi'}).$$

It follows that g_{π} is a Cauchy net for the norm $|x|_{\varphi} = \varphi(xx^*)^{1/2}$. Then $\varphi((g_{\pi} - a)(g_{\pi} - a)^*) \to 0$. On the other hand

$$\varphi((g_{\pi} - a)(g_{\pi} - a)^*) = \varphi(g_{\pi}g_{\pi}^*) + \varphi(aa^*) - \varphi(g_{\pi}a^*) - \varphi(ag_{\pi}^*).$$

Since φ is normal and the nets are uniformly bounded by 1, this expression tends to

$$\varphi(c) - \varphi(aa^*).$$

It follows that $\varphi(c) = \varphi(aa^*)$. By the above remark $aa^* \leq c$. Since φ is faithful, this implies that $aa^* = c$.

In particular, a is surjective. Let $c = (aa^*)^{1/2}v$ be the reversed polar decomposition of c. Then v is a co-isometry, and clearly, as above $v^*Ev = F$.

Corollary 3.2. Suppose that there exist positive trace class operators h_E and h_F with zero kernel, which commute, respectively with E and F. Then there exists a unitary operator u such that $u^*Eu = F$.

Proof. By the above proposition, $aa^* = c$. Reasoning analogously with the state $\psi = Tr(h_F \cdot)$, it follows also that $a^*a = b$. Since b and c are invertible, then a is invertible.

The existence of a positive trace class operator h with zero kernel which commutes with E is equivalent to the existence of a mutually orthogonal family $\{p_j\}_{j\geq 1}$ such that $\dim R(p_j)<\infty$, $\sum_{j\geq 1}p_j=1$, and p_j commute with $E(\Delta)$, for all $\Delta\in\Sigma$. Indeed, the projections onto the eigenspaces of h provide such a family. Conversely, given a family of projections as above, take for instance $h=\sum_{j\geq 1}\frac{1}{2^j}p_j$.

References

- [1] T. Ando, Open Problems, Proceedings of the Fourth Conference on Operator Theory, Timisoara, June 1979, INCREST, 1980.
- [2] T. Ando, private communication
- [3] F. Kubo, K. Matsumoto, Equivalences of operator representations of semigroups. III. Math. Japon. 21 (1976), no. 4, 377–380.
- E. Andruchow

Instituto de Ciencias, Universidad Nacional de Gral. Sarmiento

J.M. Gutierrez 1150, (1613) Los Polvorines, Argentina

and

Instituto Argentino de Matemática

Saavedra 15, 3er. piso, (1083) Buenos Aires, Argentina.

e-mail: eandruch@ungs.edu.ar