Products of projections and positive operators

M. Laura Arias^{a,1}, Gustavo Corach^{a,b,2,*}, M. Celeste Gonzalez^{a,c,3}

^aInstituto Argentino de Matemática "Alberto P. Calderón" Saavedra 15, Piso 3 (1083), Buenos Aires, Argentina. ^bDpto. de Matemática, Facultad de Ingeniería, Universidad de Buenos Aires. ^cInstituto de Ciencias, Universidad Nacional de General Sarmiento.

Abstract

This article is devoted to the study of the set \mathcal{T} of all products PA with P an orthogonal projection and A a positive (semidefinite) operator. We describe this set and study optimal factorizations. We also relate this factorization with the notion of compatibility and explore the polar decomposition of the operators in \mathcal{T} .

Keywords: projections, positive operators, polar decomposition, partial

isometries, compatibility

2010 MSC: 47A68, 47A62, 47A63

1. Introduction

Given two classes of operators \mathcal{M} and \mathcal{B} in $\mathcal{L}(\mathcal{H})$ (\mathcal{H} a Hilbert space), a problem which naturally arises is that of characterizing the set $\mathcal{M} \cdot \mathcal{B}$ of all products AB, $A \in \mathcal{M}$, $B \in \mathcal{B}$. These problems are as old as matrix theory and they form now an interesting part of factorization theory for matrices and operators. In 1958 Chandler Davis ([8], Theorem 6.3) proved that, if

^{*}Corresponding author. Address: IAM-CONICET, Saavedra 15, Piso 3 (1083), Buenos Aires, Argentina.

Email addresses: lauraarias@conicet.gov.ar (M. Laura Arias), gcorach@fi.uba.ar (Gustavo Corach), celeste.gonzalez@conicet.gov.ar (M. Celeste Gonzalez)

¹Partially supported by UBACYT 20020100100250; 2011-2014

 $^{^2}$ Partially supported by PICT 808-2008 (FONACYT) and UBACYT 20020100100250; 2011 2014

³Partially supported by PIP 11220090100757 (CONICET)

 \mathcal{I} denotes the set of Hermitian involutions (i.e., $T=T^*=T^{-1}$) then $\mathcal{I} \cdot \mathcal{I}$ coincides with all unitaries T such that T is similar to T^{-1} . H. Radjavi and J.P. Williams [21] proved later that $\mathcal{I} \cdot \mathcal{L}^h$, where \mathcal{L}^h denotes the set of Hermitian operators on \mathcal{H} , is the set of all $T \in \mathcal{L}(\mathcal{H})$ such that T is unitarily equivalent to T^{-1} . Their paper also contains a characterization of $\mathcal{P} \cdot \mathcal{P}$ due to T. Crimmins and a characterization of $\mathcal{P} \cdot \mathcal{L}^h$ (here, \mathcal{P} denotes the set of all orthogonal projectors of $\mathcal{L}(\mathcal{H})$). Other characterizations of $\mathcal{P} \cdot \mathcal{P}$ have been found by S. Nelson and M. Neumann [17], A. Arias and S. Gudder [1], T. Oikhberg [18] and the second author and A. Maestripieri [6]. In a series of papers, J.R. Holub [14],[15], [16] (see also Fujii and Furuta [12]) studied, as an approach to general Wiener-Hopf or Toeplitz operators, some properties of the class $\mathcal{P} \cdot \mathcal{G}^+ = \{PA : P \in \mathcal{P} \text{ and } A \in \mathcal{L}^+ \text{ is invertible}\}$, where \mathcal{L}^+ denotes the cone of positive semidefinite operators in $\mathcal{L}(\mathcal{H})$. They observed that the set \mathcal{Q} of oblique (i.e., not necessarily orthogonal) projections in $\mathcal{L}(\mathcal{H})$ is contained in $\mathcal{P} \cdot \mathcal{G}^+$.

In this paper, we characterize operators in $\mathcal{T} := \mathcal{P} \cdot \mathcal{L}^+$. We extend several results on $\mathcal{P} \cdot \mathcal{P}$ and Holub's theorem that \mathcal{Q} is contained in $\mathcal{P} \cdot \mathcal{G}^+$. It should be noticed that \mathcal{Q} is not contained in $\mathcal{P} \cdot \mathcal{P}$, but it is contained in $(\mathcal{P} \cdot \mathcal{P})^{\dagger}$, the set of all Moore-Penrose inverses of products PQ, $P,Q \in \mathcal{P}$. This is an old result by Penrose [20] and Greville [13] which has been extended to the infinite dimensional case in [5] and [4]. The paper [21] by H. Radjavi and J. Williams and the survey [25] by P.Y.Wu contain many characterizations of classes of the type $\mathcal{M} \cdot \mathcal{B}$.

One of the main features of the class $\mathcal{P} \cdot \mathcal{L}^+$ is that their elements admit a particular polar decomposition where the partial isometry is an orthogonal projection. In fact, for $T \in \mathcal{T}$, any factorization T = PA, with $P \in \mathcal{P}$ and $A \in \mathcal{L}^+$ provides one such polar decomposition. Among all these expressions, we find one (the optimal factorization) with some relevant minimal properties. The main characterization of \mathcal{T} is based on a result of Z. Sebestyén [22]. We include a proof, which is completely different from the original one, because it illustrates how the classical majorization theorem of R. G. Douglas [10], [11] can be used to provide special solutions of some operator equations. In fact, if $T \in \mathcal{T}$ and P is the orthogonal projection onto the closure of the image of T, then the positive solutions of the equation PX = T play a natural role in this paper.

The contents of the paper are the following. Section 2 contains notations and the statements of some theorems by Crimmins ([11] Theorem 2.2), Douglas ([10], Theorem 1) and Sebestyén [22]. We include a proof of the last

one based on Douglas' theorem. Section 3 is devoted to several properties of the set \mathcal{T} and different characterizations of its elements. Just to mention two of them, $T \in \mathcal{L}(\mathcal{H})$ belongs to \mathcal{T} if and only if there exists $\lambda \geq 0$ such that $(T^*T)^2 \leq \lambda T^*T^2$ (Theorem 3.2). If R(T) is closed then $T \in \mathcal{T}$ if and only if $R(T) + N(T) = \mathcal{H}$ and $TP \in \mathcal{L}^+$, where $P = P_{R(T)}$ (Theorem 3.3). A formula for the oblique projection onto R(T) with nullspace N(T)is exhibited at Section 4, where a particular factorization of $T \in \mathcal{T}$ is shown to have several optimal properties. For instance, if $T \in \mathcal{T}$ then there exist $P_T \in \mathcal{P}$ and $A_T \in \mathcal{L}^+$ such that $T = P_T A_T$ and $P_T \leq P$ and $A_T \leq A$ for all $P \in \mathcal{P}, A \in \mathcal{L}^+$ such that T = PA. The last result of section 4 is the characterization of the fiber of $T \in \mathcal{T}$ by the map $(P, A) \to PA$, i.e., we find all pairs $(P,A) \in \mathcal{P} \times \mathcal{L}^+$ such that PA = T. In Section 5 we relate the different factorizations of $T \in \mathcal{T}$ with the notions of compatibility and quasicompatibility between positive operators and closed subspaces. It turns out that, if $T \in \mathcal{T}$ and T = PA for some $P = P_{\mathcal{S}} \in \mathcal{P}$ and $A \in \mathcal{L}^+$, then the pair (A, \mathcal{S}) is compatible if and only if $\mathcal{H} = \overline{R(T)} + N(T)$. The last section studies some properties of the standard polar decomposition of $T \in \mathcal{T}$.

2. Preliminaries

Throughout \mathcal{F} , \mathcal{H} and \mathcal{K} denote separable complex Hilbert spaces. By $\mathcal{L}(\mathcal{H},\mathcal{K})$ we denote the space of all bounded linear operators from \mathcal{H} to \mathcal{K} . The algebra $\mathcal{L}(\mathcal{H},\mathcal{H})$ is abbreviated by $\mathcal{L}(\mathcal{H})$. By $\mathcal{L}(\mathcal{H})^+$ we denote the cone of positive (semidefinite) operators of $\mathcal{L}(\mathcal{H})$ i.e., $T \in \mathcal{L}(\mathcal{H})^+$ if and only if $\langle Tx, x \rangle \geq 0$ for all $x \in \mathcal{H}$. Furthermore, $\mathcal{G}(\mathcal{H})$ denotes the group of invertible operators on \mathcal{H} and $\mathcal{CR}(\mathcal{H})$ the set of closed range operators on \mathcal{H} . When no confusion can arise, we omit the Hilbert space and we write it simply $\mathcal{L}^+, \mathcal{G}$ and \mathcal{CR} respectively. Moreover, we denote $\mathcal{G}^+ = \mathcal{G} \cap \mathcal{L}^+$. We shall denote by $\mathcal{Q} = \{Q \in \mathcal{L}(\mathcal{H}) : Q = Q^2\}$ and $\mathcal{P} = \{P \in \mathcal{Q} : P = P^*\}$. Given $T \in \mathcal{L}(\mathcal{H},\mathcal{K})$, R(T) denotes the range or image of T, N(T) the nullspace of T, T^* the adjoint of T and T^\dagger the Moore-Penrose inverse of T. Recall that $T^\dagger \in \mathcal{L}(\mathcal{K},\mathcal{H})$ if and only if R(T) is closed. Moreover, fixed a closed subspace \mathcal{S} , $P_{\mathcal{S}}$ stands for the orthogonal projection onto \mathcal{S} . In the sequel we denote by $\mathcal{S} + \mathcal{W}$ the direct sum of the subspaces \mathcal{S} and \mathcal{W} . In particular, if $\mathcal{S} \subseteq \mathcal{W}^\perp$ we denote $\mathcal{S} \oplus \mathcal{W}$.

We end this section by stating three important results that we will frequently use along this article.

Theorem 2.1. ([11], Theorem 2.2) If $A, B \in \mathcal{L}(\mathcal{H})$ then $R(A) + R(B) = R((AA^* + BB^*)^{1/2})$.

Theorem 2.2. (Douglas, [10]) Let $A \in \mathcal{L}(\mathcal{H}, \mathcal{K})$ and $B \in \mathcal{L}(\mathcal{F}, \mathcal{K})$. The following conditions are equivalent:

- 1. $R(B) \subseteq R(A)$.
- 2. There is a positive number λ such that $BB^* \leq \lambda AA^*$.
- 3. There exists $C \in \mathcal{L}(\mathcal{F}, \mathcal{H})$ such that AC = B.

If one of these conditions holds then there is a unique operator $D \in \mathcal{L}(\mathcal{F}, \mathcal{H})$ such that AD = B and $R(D) \subseteq N(A)^{\perp}$. We shall call D the **reduced** solution of AX = B. Moreover, N(D) = N(B).

The following result due to Sebestyén will be crucial along this article. Here, we present a different proof by means of Douglas' theorem.

Theorem 2.3. ([22]) Let $A, B \in \mathcal{L}(\mathcal{H}, \mathcal{K})$. The equation AX = B has a positive solution if and only if $BB^* \leq \lambda AB^*$ for some $\lambda \geq 0$.

Proof. Let Y be a positive solution of AX = B. Since $R(AY) \subseteq R(AY^{1/2})$ we obtain, by Douglas' theorem, that $BB^* = AYYA^* \le \lambda AY^{1/2}Y^{1/2}A^* = \lambda AYA^* = \lambda AB^*$ for some $\lambda \ge 0$.

Conversely, if $BB^* \leq \lambda AB^*$ for some $\lambda \geq 0$ then, by Douglas' theorem, there exists $D \in \mathcal{L}(\mathcal{H})$ such that $(AB^*)^{1/2}D = B$, $R(D) \subseteq N((AB^*)^{1/2})^{\perp}$ and N(D) = N(B). Then,

$$(AB^*)^{1/2}DA^* = BA^* = (AB^*)^{1/2}(AB^*)^{1/2}. (1)$$

Therefore, DA^* and $(AB^*)^{1/2}$ are both the reduced solution of $(AB^*)^{1/2}X = BA^*$. Thus, by the uniqueness of the reduced solution, we get that $DA^* = (AB^*)^{1/2}$. So $AD^*D = (AB^*)^{1/2}D = B$, i.e, $Y = D^*D \in \mathcal{L}^+$ is solution of AX = B and the result is obtained.

Corollary 2.4. If the operator equation AX = B has a positive solution then there exists $Y \in \mathcal{L}(\mathcal{H})^+$ such that AY = B and N(Y) = N(B).

Proof. Let D be the reduced solution of $(AB^*)^{1/2}X = B$. Then, by the proof of Theorem 2.3, $Y = D^*D$ is a positive solution of AX = B with N(Y) = N(B).

3. The set \mathcal{T}

This section is devoted to the study of the set.

$$\mathcal{T} := \mathcal{P} \cdot \mathcal{L}^+ = \{ T \in \mathcal{L}(\mathcal{H}) : T = PA \text{ with } P \in \mathcal{P} \text{ and } A \in \mathcal{L}^+ \}.$$

As we mentioned, the subclass $\mathcal{P} \cdot \mathcal{P}$ has been studied in [6] where several properties of this set have been provided. However, it must be noted that many properties of $\mathcal{P} \cdot \mathcal{P}$ are not longer valid in \mathcal{T} . For instance, given $T \in \mathcal{P} \cdot \mathcal{P}$, it holds that $T \in \mathcal{CR}$ if and only if $\mathcal{H} = \overline{R(T)} + N(T)$ (see [6] Theorem 3.2). Now, this characterization is not true if $T \in \mathcal{T}$. Indeed, consider $T \in \mathcal{L}^+$ with non-closed range then $T \in \mathcal{T}$ and $\mathcal{H} = \overline{R(T)} + N(T)$. Moreover, both sets have different topological properties. For example, $\mathcal{P} \cdot \mathcal{P}$ is closed but \mathcal{T} is not. In fact, $T_n = \begin{bmatrix} 1/n & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1/n & 1 \\ 1 & n \end{bmatrix} \in \mathcal{T}$.

However, $\lim_{n\to\infty} T_n = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \notin \mathcal{T}$ (see Theorem 3.2).

In what follows, given $T \in \mathcal{T}$ we denote

$$\mathcal{T}_T^+ := \{ A \in \mathcal{L}(\mathcal{H})^+ : \exists P \in \mathcal{P} \text{ such that } T = PA \}$$

and

$$\mathcal{T}_T^{\mathcal{P}} := \{ P \in \mathcal{P} : \exists A \in \mathcal{L}(\mathcal{H})^+ \text{ such that } T = PA \}.$$

In the following lemma we collect some properties of \mathcal{T} .

Lemma 3.1. Let $T \in \mathcal{T}$. Then, the following conditions hold:

- 1. $P_{\overline{R(T)}} \in \mathcal{T}_T^{\mathcal{P}}$.
- 2. The spectrum of T, $\sigma(T)$, is positive.
- 3. $T^n \in \mathcal{T}$ for all $n \in \mathbb{N}$.
- 4. $T \in \mathcal{G}$ if and only if $T \in \mathcal{G}^+$.
- 5. $if TT^* = T^*T then T \in \mathcal{L}^+$.
- 6. $\overline{R(T)} \cap N(T) = \{0\}, i.e., N(T^*) + \overline{R(T^*)} \text{ is a dense subspace of } \mathcal{H}.$
- 7. $R(T^*) \cap N(T^*) = \{0\}$ but, in general, $\overline{R(T^*)} \cap N(T^*) \neq \{0\}$ (i.e., $\overline{R(T)} + N(T)$ is not dense, in general). As a consequence, in general, $T^* \notin \mathcal{T}$.
- Proof. 1. Since $T \in \mathcal{T}$, then $T = P_{\mathcal{S}}A$ for some $P_{\mathcal{S}} \in \mathcal{P}$ and $A \in \mathcal{L}^+$. Therefore, $R(T) \subseteq \mathcal{S}$ and as \mathcal{S} is a closed subspace, then $\overline{R(T)} \subseteq \mathcal{S}$. Hence, $T = P_{\overline{R(T)}}T = P_{\overline{R(T)}}P_{\mathcal{S}}A = P_{\overline{R(T)}}A$ and so $P_{\overline{R(T)}} \in \mathcal{T}_T^{\mathcal{P}}$.

- 2. Let T = PA then $\sigma(T) = \sigma(PA) = \sigma(A^{1/2}PA^{1/2}) > 0$.
- 3. Let $T = PA \in \mathcal{T}$ and $k \in \mathbb{N}$. Then, $T^{2k} = (PA)^{2k} = P(AP)^k (PA)^k = P(T^*)^k T^k \in \mathcal{T}$. On the other side, $T^{2k+1} = TT^{2k} = PAP(T^*)^k T^k = P(T^*)^{k+1} T^k = P(T^*)^k APT^k = P((T^*)^k AT^k) \in \mathcal{T}$. Then the assertion follows.
- 4. If $T \in \mathcal{G}$ then, by item 1, $I \in \mathcal{T}_T^{\mathcal{P}}$ and so $T \in \mathcal{G}^+$.
- 5. Applying item 2, we have that T is a normal operator with $\sigma(T) \geq 0$, then $T \in \mathcal{L}^+$.
- 6. Let T = PA and $x \in \overline{R(T)} \cap N(T)$. Since $R(T) \subseteq R(P)$ then PAPx = 0, i.e, $A^{1/2}Px = 0$ and so $APx = T^*x = 0$. Thus, $x \in \overline{R(T)} \cap N(T^*) = \{0\}$ and the result is obtained.
- 7. Let T = PA and $z \in R(T^*) \cap N(T^*)$. Hence, z = APx for some $x \in \mathcal{H}$ and APz = 0. Thus, APAPx = 0, and so PAPAPx = 0. Hence, PAPx = 0 and so $A^{1/2}Px = 0$. Therefore, APx = z = 0.

 For the second part, consider $A \in \mathcal{L}^+$ with non closed range and $x \in \overline{R(A)} \setminus R(A)$. Define $S = \underset{\overline{R(A)}}{\operatorname{span}} \{x\}^{\perp}$ and $T = P_{S}A$. Clearly, $T \in \mathcal{T}$ and N(T) = N(A). Thus, $\overline{R(T^*)} = \overline{R(A)}$ and $\{0\} \neq \operatorname{span}\{x\} = S^{\perp} \cap \overline{R(A)} = S^{\perp} \cap \overline{R(T^*)} \subseteq N(T^*) \cap \overline{R(T^*)}$.

In [21], it is proven that $T \in \mathcal{P} \cdot \mathcal{L}^h$ if and only if T^*T^2 is selfadjoint. In particular, this shows that $\mathcal{P} \cdot \mathcal{L}^h$ is closed; recall that $\mathcal{T} = \mathcal{P} \cdot \mathcal{L}^+$ is not. It is natural to ask if a necessary and sufficient condition for $T \in \mathcal{T} = \mathcal{P} \cdot \mathcal{L}^+$ is that T^*T^2 be positive. The next result proves that the answer is negative, and that a stronger condition is needed.

Theorem 3.2. Let $T \in \mathcal{L}(\mathcal{H})$ and $P = P_{\overline{R(T)}}$. The following conditions are equivalent:

- 1. $T \in \mathcal{T}$;
- 2. $TT^* \leq \lambda TP$ for some $\lambda \geq 0$;
- 3. $TP \in \mathcal{L}^+$ and $R(T(I-P)) \subseteq R((TP)^{1/2})$;
- 4. $(T^*T)^2 \leq \lambda T^*T^2$ for some $\lambda \geq 0$.

Proof. $1 \Rightarrow 2$. If $T \in \mathcal{T}$ then the equation T = PX has a positive solution and so, by Theorem 2.3, $TT^* \leq \lambda TP$ for some $\lambda \geq 0$.

 $2\Rightarrow 3$. If $TT^* \leq \lambda TP$ for some $\lambda \geq 0$ then $TP \in \mathcal{L}^+$. In addition, $T(I-P)T^* = TT^* - TPT^* \leq TT^* \leq \lambda TP$. Therefore, by Douglas' theorem, $R(T(I-P)) \subseteq R((TP)^{1/2})$.

- $3 \Rightarrow 4$. Suppose $TP \in \mathcal{L}^+$ and $R(T(I-P)) \subseteq R((TP)^{1/2})$. Then, by Douglas' theorem, $TT^* TPT^* \leq \alpha TP$ for some $\alpha > 0$. As $R(TP) \subseteq R((TP)^{1/2})$, using again Douglas' theorem, we get that $(TP)^2 \leq \beta TP$ for some $\beta > 0$. Hence $TT^* \leq (\alpha + \beta)TP$. Now, the assertion follows multiplying with T^*, T .
- $4\Rightarrow 1$. Assume that item 4 holds. By Theorem 2.3, there exists $X_0 \in \mathcal{L}^+$ such that $T^*T = T^*X_0$, and so $T^*T = T^*X_0 = T^*PX_0$. Thus, T and PX_0 are both solutions of the operator equation $T^*X = T^*T$. Moreover, $R(T), R(PX_0) \subseteq N(T^*)^{\perp} = \overline{R(T)}$, i.e., T and PX_0 are both the reduced solution of $T^*X = T^*T$. Hence, by the uniqueness of this solution, we obtain that $T = PX_0$ and so $T \in \mathcal{T}$.

Theorem 3.3. Let $T \in \mathcal{CR}$ and $P = P_{R(T)}$. The following conditions are equivalent:

- 1. $T \in \mathcal{T}$;
- 2. there exists $A \in \mathcal{G}^+$ such that T = PA;
- 3. $R(T) + N(T) = \mathcal{H}$ and $TP \in \mathcal{L}^+$.

Proof. $1 \Rightarrow 2$. Let $T \in \mathcal{T}$. Hence, there exists $B \in \mathcal{L}^+$ such that PB = T. Therefore, $R(B) + R(T)^{\perp} = \mathcal{H}$. Define $A := B + P_{R(T)^{\perp}}$. Hence, $R(A^{1/2}) = R(B^{1/2}) + R(T)^{\perp} \supset \mathcal{H}$ and so $A \in \mathcal{G}^+$. Now, as PA = PB = T, the result is obtained.

- $2\Rightarrow 3$. Suppose that T=PA with $A\in \mathcal{G}^+$. Since $A\in \mathcal{G}^+$, then $\langle x,y\rangle_A:=\langle Ax,y\rangle$ defines a inner product equivalent to \langle,\rangle . Now, since $N(T)=A^{-1}(R(T)^\perp)=R(T)^{\perp_A}$ then $R(T)\dotplus N(T)=\mathcal{H}$. In addition, $TP=PAP\in \mathcal{L}^+$.
- $3\Rightarrow 1$. Assume that $R(T)+N(T)=\mathcal{H}$ and $TP\in\mathcal{L}^+$. Let us define $A:=T^*(TP)^\dagger T$. Note that since R(TP)=R(T) (because $R(T)+N(T)=\mathcal{H}$) then TP has closed range and so $(TP)^\dagger\in\mathcal{L}^+$. Thus, $A\in\mathcal{L}^+$ and T=PA, i.e, $T\in\mathcal{T}$.

Observe that as an immediate consequence of Theorem 3.3 we obtain that $Q \subseteq \mathcal{T}$.

Remark 3.4. Taking into account Lemma 3.1 and Theorem 3.3, a natural question is if $\overline{R(T)} \cap N(T) = \{0\}$ and $TP_{\overline{R(T)}} \in \mathcal{L}^+$ imply $T \in \mathcal{T}$. However, this is false in general. In fact, consider a Hilbert space decomposition $\mathcal{H} = \mathbb{R}$

 $\mathcal{S} \oplus \mathcal{S}^{\perp}$ and define $T = \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix}$ with a a positive injective operator with no closed range and b such that $R(b) \not\subseteq R(\underline{a^{1/2}})$. Then, $\overline{R(T)} = \overline{R(a)} = \mathcal{S}$ and so, by the injectivity of a, we have that $\overline{R(T)} \cap N(T) = \{0\}$. Moreover, $TP_{\overline{R(T)}} = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} \in \mathcal{L}^+$. However, since $R(b) \not\subseteq R(a^{1/2})$, then there does not exist $A \in \mathcal{L}^+$ such that $T = P_{\overline{R(T)}}A$, i.e., $T \notin \mathcal{T}$ (see [23] and [19]).

In the sequel, we abbreviate

$$\mathcal{T}_{cr} = \mathcal{T} \cap \mathcal{CR}$$
.

Note that, by Theorem 3.3, $\mathcal{T}_{cr} = \mathcal{P} \cdot \mathcal{G}^+$.

Proposition 3.5. It holds $\mathcal{T}_{cr}^{\dagger} = \mathcal{T}_{cr}$.

Proof. Let $T \in \mathcal{T}_{cr}$, then by Theorem 3.3, T = PA with $A \in \mathcal{G}^+$ and $P = P_{R(T)}$. Now, define $C = P_{R(AP)}A^{-1}$. Observe that TC = P and $R(C) = N(T)^{\perp}$ then, by Theorem 3.1 in [2], $T^{\dagger} = C = P_{R(AP)}A^{-1}$ and so $T^{\dagger} \in \mathcal{T}_{cr}$. The converse follows from the fact that $(T^{\dagger})^{\dagger} = T$.

4. Optimal factorization

In this section, given $T \in \mathcal{T}$, we describe all factors $A \in \mathcal{T}_T^+$ and $P \in \mathcal{T}_T^{\mathcal{P}}$ such that T = PA. In particular we show that T admits an optimal factorization.

Proposition 4.1. Let $T \in \mathcal{T}$. Then, there exists $A \in \mathcal{T}_T^+$ with N(A) = N(T). Moreover, there exists a unique $A \in \mathcal{T}_T^+$ with N(A) = N(T) if and only if $\overline{R(T^*)} \cap N(T^*) = \{0\}$.

Proof. Let $P = P_{\overline{R(T)}}$. As $T \in \mathcal{T}$ then PX = T has a positive solution. Now, by Corollary 2.4, there exists $A \in \mathcal{L}^+$ such that PA = T and N(A) = N(T). On the other hand, suppose that $\mathcal{S} = \overline{R(T^*)} \cap N(T^*) \neq \{0\}$ and let $A \in \mathcal{T}_T^+$ with N(A) = N(T). Define $Y := A + P_{\mathcal{S}}$. Observe that $Y \in \mathcal{T}_T^+$ and so $N(Y) \subseteq N(T)$. Now, let $x \in N(T) \subseteq \mathcal{S}^\perp$. Then $Yx = Ax + P_{\mathcal{S}}x = 0$. Thus, $N(T) \subseteq N(Y)$, i.e., N(T) = N(Y) and so the uniqueness does not hold. Conversely, suppose that there exist $A_1, A_2 \in \mathcal{T}_T^+$ with $N(A_1) = N(A_2) = N(T)$. Then $A_1 - A_2$ is a selfadjoint solution of the equation PX = 0. Then, by Lemma 2.8 in [3], $A_1 - A_2 = (I - P)(A_1 - A_2)(I - P)$. Therefore $R(A_1 - A_2) \subseteq \overline{R(T^*)} \cap R(T)^\perp = \overline{R(T^*)} \cap N(T^*) = \{0\}$. So that $A_1 = A_2$.

Remark 4.2. In the sequel, given $T \in \mathcal{T}$ we shall denote by

$$A_T := (((TP)^{1/2})^{\dagger}T)^*((TP)^{1/2})^{\dagger}T,$$

where $P = P_{\overline{R(T)}}$. Note that:

- 1. $A_T \in \mathcal{T}_T^+$.
- 2. $N(A_T) = N(T)$.
- 3. $T = PA_T$.
- 4. If $T \in \mathcal{T}_{cr}$ then $R(A_T) = R(T^*)$.

Indeed, as $T \in \mathcal{T}$, then the equation PX = T has a positive solution. Therefore, items 1 and 2 follows by the proof of Corollary 2.4. Moreover, since $A_T \in \mathcal{T}_T^+$ then there exists $P_{\mathcal{S}} \in \mathcal{P}$ such that $T = P_{\mathcal{S}}A_T$. Then, as $\overline{R(T)} \subseteq \mathcal{S}$, it holds that $T = P_{\overline{R(T)}}P_{\mathcal{S}}A_T = P_{\overline{R(T)}}A_T$. On the other hand, if $T \in \mathcal{T}_{cr}$ then, by Theorem 3.3, $\mathcal{H} = R(T) + N(T)$. Hence, R(TP) = R(T), and $R(((TP)^{1/2})^{\dagger}T) = R(((TP)^{1/2})^{\dagger}TP) = R((TP)^{1/2}) = R(TP) = R(T)$. Then $R(A_T)$ is closed and so, by item 2, $R(A_T) = R(T^*)$.

Observe that, by Theorem 3.3, given $T \in \mathcal{T}_{cr}$, it holds that $\mathcal{H} = R(T) + N(T)$. Thus, the projection $Q_{R(T)//N(T)}$ with range R(T) and nullspace N(T) is well-defined. In the next proposition we show that this projection can also be factorized in terms of the factors of $T \in \mathcal{T}$.

Proposition 4.3. Let $T \in \mathcal{T}_{cr}$ and $P = P_{R(T)}$. Then,

$$Q_{R(T)//N(T)} = P(A_T P)^{\dagger} A_T.$$

Proof. It is easy to check that $P(A_TP)^{\dagger}A_T$ is an idempotent operator with $R(P(A_TP)^{\dagger}A_T) \subseteq R(T)$. Thus, let us show that $N(P(A_TP)^{\dagger}A_T) = N(T)$. Now, let $x \in N(P(A_TP)^{\dagger}A_T)$. Then $(A_TP)^{\dagger}A_Tx \in R(T)^{\perp} \cap N(A_TP)^{\perp} = R(T)^{\perp} \cap R(T) = \{0\}$. So that $A_Tx \in R(T^*) \cap N((A_TP)^{\dagger}) = R(T^*) \cap N(PA_T) = R(T^*) \cap N(T) = \{0\}$. Hence $x \in N(A_T) = N(T)$ and so $N(P(A_TP)^{\dagger}A_T) \subseteq N(T)$. The other inclusion is trivial. In consequence $P(A_TP)^{\dagger}A_T = Q_{R(T)//N(T)}$.

Our next result fully describes the set \mathcal{T}_T^+ .

Proposition 4.4. Let $T \in \mathcal{T}$ and $P = P_{\overline{R(T)}}$. Then

$$\mathcal{T}_T^+ = \{ A_T + (I - P)C(I - P) : C \in \mathcal{L}^+ \}.$$

In particular, \mathcal{T}_T^+ is a closed convex set.

Proof. Let us consider the orthogonal decomposition $\mathcal{H} = \overline{R(T)} \oplus R(T)^{\perp}$. Then, under this decomposition, $T = \begin{bmatrix} t_1 & t_2 \\ 0 & 0 \end{bmatrix}$ and $P = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. Thus, if $A \in \mathcal{T}_T^+$ then T = PA and so, by [23] (see also [19]), $A = \begin{bmatrix} t_1 & t_2 \\ t_2^* & d^*d + f \end{bmatrix}$ with $d = (t_1^{1/2})^{\dagger}t_2$ and $f \in \mathcal{L}(R(T)^{\perp})^+$. Now, $A = \begin{bmatrix} t_1 & t_2 \\ t_2^* & d^*d \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & f \end{bmatrix} = A_T + (I - P)C(I - P)$ with $C \in \mathcal{L}^+$. The other inclusion follows from Remark 4.2.

Corollary 4.5. Let $T \in \mathcal{T}_{cr}$ and $P = P_{R(T)}$. Then,

$$\mathcal{T}_T^+ \cap \mathcal{G} = \{A_T + (I - P)C(I - P) : C \in \mathcal{G}^+\}$$

Proof. Let $A \in \mathcal{T}_T^+$ be an invertible operator. Then, by Proposition 4.4, $A = A_T + (I - P)S(I - P)$ with $S \in \mathcal{L}^+$. Now, let us define $C = S + TT^* \in \mathcal{L}^+$. Note that $R(C) = \mathcal{H}$. In fact, by Theorem 2.1 and Remark 4.2, $\mathcal{H} = R(A) = R(T^*) + R((I - P)S^{1/2})$. Now, by Theorem 3.3, $R(I - P) + R(T^*) = N(T^*) + R(T^*) = \mathcal{H}$. Hence, $R((I - P)S^{1/2}) = R(I - P)$ and so $\mathcal{H} = R(S^{1/2}) + R(T) = R(C)$. Thus, $C \in \mathcal{G}(\mathcal{H})^+$ and $A = A_T + (I - P)S(I - P) = A_T + (I - P)C(I - P)$.

For the converse, it is sufficient to note that given $C \in \mathcal{G}(\mathcal{H})^+$ then $R((A_T + (I - P)C(I - P))^{1/2}) = R((A_T)^{1/2}) + R((I - P)C^{1/2}) = R(T^*) + N(T^*) = \mathcal{H}$, where the last equality is consequence of Theorem 3.3. Therefore, $A_T + (I - P)C(I - P) \in \mathcal{G}^+$ and the result is proved.

In the next proposition we describe the elements of \mathcal{G}^+ that factorize \mathcal{CR}^+ and \mathcal{Q} .

Proposition 4.6. Let $A \in \mathcal{G}^+$. The following equivalence holds:

- 1. $PA \in \mathcal{CR}^+$ for some $P \in \mathcal{P}$ if and only if $A(\mathcal{S}) = \mathcal{S}$ for some closed subspace \mathcal{S} .
- 2. $PA \in \mathcal{Q}$ for some $P \in \mathcal{P}$ if and only if $A^{1/2}|_{\mathcal{S}}$ is an isometry for some closed subspace \mathcal{S} .

Proof. 1. If $PA \in \mathcal{CR}^+$ for some $P \in \mathcal{P}$ with $R(P) = \mathcal{S}$ then PA = AP and so $A\mathcal{S} = \mathcal{S}$. Conversely, if $A\mathcal{S} = \mathcal{S}$ then $P_{\mathcal{S}}AP_{\mathcal{S}} = AP_{\mathcal{S}}$ and so $AP_{\mathcal{S}} \in \mathcal{CR}^+$.

2. See Theorem 2 in [15].

In the next proposition we show that A_T is optimal in \mathcal{T}_T^+ in two senses.

Proposition 4.7. Let $T \in \mathcal{T}$. Then, $A_T = \min \mathcal{T}_T^+$. Moreover, $||A_T|| = \min\{||A|| : A \in \mathcal{T}_T^+\}$.

Proof. If $A \in \mathcal{T}_T^+$ then, by Proposition 4.4, $A = A_T + C$ with $C \in \mathcal{L}^+$ and so $A_T \leq A$. Thus, the first equality is proved. For the second equality, as $0 \leq A_T \leq A$, then for all $x \in \mathcal{H}$ with ||x|| = 1, we have that $\langle A_T x, x \rangle \leq \langle Ax, x \rangle \leq ||A||$. Thus, $||A_T|| = \sup_{||x||=1} \langle A_T x, x \rangle \leq ||A||$.

We now study the set $\mathcal{T}_T^{\mathcal{P}}$.

Proposition 4.8. Let $T \in \mathcal{T}$. Then,

$$\mathcal{T}_T^{\mathcal{P}} = \{ P_{\mathcal{S}} \in \mathcal{P} : \mathcal{S} = \overline{R(T)} \oplus \mathcal{M} \text{ for some } \mathcal{M} \subseteq N(T) \}.$$

Moreover, fixed $A \in \mathcal{T}_T^+$ then

$$\{P_{\mathcal{S}} \in \mathcal{P} : T = P_{\mathcal{S}}A\} = \{P_{\mathcal{S}} \in \mathcal{P} : \mathcal{S} = \overline{R(T)} \oplus \mathcal{M} \text{ for some } \mathcal{M} \subseteq N(A)\}.$$

On the other hand, fixed $P \in \mathcal{T}_T^{\mathcal{P}}$,

$${A \in \mathcal{L}^+ : T = PA} = {A_T + (I - P)C(I - P) : C \in \mathcal{L}^+}.$$

<u>Proof.</u> Let us prove the first equality. For this, if $T = P_{\mathcal{S}} A$ with $A \in \mathcal{L}^+$ then $\overline{R(T)} \subseteq \mathcal{S}$ and so $T = P_{\overline{R(T)}} A$. Furthermore, $\mathcal{M} := \mathcal{S} \ominus \overline{R(T)}$ is well-defined and $\mathcal{S} = \overline{R(T)} \oplus \mathcal{M}$. Therefore, $P_{\mathcal{S}} = P_{\overline{R(T)}} + P_{\mathcal{M}}$ and $P_{\overline{R(T)}} A = T = P_{\mathcal{S}} A = P_{\overline{R(T)}} A + P_{\mathcal{M}} A$. After cancellation, we get $P_{\mathcal{M}} A = 0$, i.e., $\mathcal{M} \subseteq N(A)$. Now, since $N(A) \subseteq N(T)$ we obtain the desired inclusion.

Conversely, let $S = \overline{R(T)} \oplus \mathcal{M}$ with $\mathcal{M} \subseteq N(T)$. Since $T \in \mathcal{T}$, there exists $A \in \mathcal{L}^+$ with N(A) = N(T) such that $T = P_{\overline{R(T)}}A$. Now, as $\mathcal{M} \subseteq N(T) = N(A)$ we obtain that $P_{\mathcal{S}}A = P_{\overline{R(T)}}A + P_{\mathcal{M}}A = T$. The equality is proved.

The second equality can be proved similarly.

Now, given $P \in \mathcal{T}_T^{\mathcal{P}}$, we know that $R(P) = \overline{R(T)} \oplus \mathcal{M}$ with $\mathcal{M} \subseteq N(T)$. Thus, $P = P_{\overline{R(T)}} + P_{\mathcal{M}}$. Note that as $N(T) = N(A_T)$ then we get that $PA_T = T$. Now, let $A \in \mathcal{L}^+$ such that PA = T. Hence, by Proposition 4.4, $A = A_T + (I - P_{\overline{R(T)}})C(I - P_{\overline{R(T)}})$ for some $C \in \mathcal{L}^+$. Hence, $T = PA = PA_T + (P - PP_{\overline{R(T)}})C(I - P_{\overline{R(T)}}) = T + (P - PP_{\overline{R(T)}})C(I - PP_{\overline{R(T)}})$. Thus, $(P - PP_{\overline{R(T)}})C(I - PP_{\overline{R(T)}}) = 0$ and so $(P - PP_{\overline{R(T)}})C(I - PP_{\overline{R(T)}})P = (P - PP_{\overline{R(T)}})C(P - PP_{\overline{R(T)}}) = 0$ Now, as $P - PP_{\overline{R(T)}} = PP_{\overline{R(T)}}$, then $PP_{\overline{R(T)}} = 0$, i.e., $PP_{\overline{R(T)}} = PP_{\overline{R(T)}} = PP_{\overline{R(T)$

As consequence of the previous results we obtain a characterization of the set $\{(P, A) : PA = T\}$ for a given $T \in \mathcal{T}$. Observe that Proposition 4.8 gives partial answers of this problem.

Theorem 4.9. Let $T \in \mathcal{T}, P \in \mathcal{P}$ and $A \in \mathcal{L}^+$. Then, T = PA if and only if there exists a closed subspace, \mathcal{M} , of \mathcal{H} and $C \in \mathcal{L}^+$ such that

- 1. $R(P) = \overline{R(T)} \oplus \mathcal{M};$
- 2. $\mathcal{M} \subseteq N(T)$;
- 3. $A = A_T + (I P)C(I P)$.

Proof. It follows from Proposition 4.8.

We prove now the minimality of $P_{\overline{R(T)}}$ in $\mathcal{T}_T^{\mathcal{P}}$.

Proposition 4.10. Let $T \in \mathcal{T}$. Then, $P_{\overline{R(T)}} = \min \mathcal{T}_T^{\mathcal{P}}$.

Proof. Let
$$P_{\mathcal{S}} \in \mathcal{T}_T^{\mathcal{P}}$$
. Then, $\overline{R(T)} \subseteq \mathcal{S}$, i.e., $P_{\overline{R(T)}} \leq P_{\mathcal{S}}$.

Definition 4.11. For $T \in \mathcal{T}$ the identity $T = P_{\overline{R(T)}}A_T$ is called the **optimal** factorization of T.

Remark 4.12. In [6] it is proven that, for $T \in \mathcal{P} \cdot \mathcal{P}$, the identity $T = P_{\overline{R(T)}}P_{N(T)^{\perp}}$, found by T. Crimmins (see [21] Theorem 8) has several minimality properties. We show now that it coincides with the optimal factorization of T, i.e., for $T \in \mathcal{P} \cdot \mathcal{P}$ it holds $A_T = P_{N(T)^{\perp}}$. In fact, $P_{N(T)^{\perp}}$ is a positive operator with nullspace N(T), so, by Crimmins' result, $P_{N(T)^{\perp}} \in \mathcal{T}_T^+$. On the other hand, by [6] Theorem 3.2, $\overline{R(T^*)} \cap N(T^*) = \{0\}$. Then, by Proposition 4.1, we get $A_T = P_{N(T)^{\perp}}$.

5. Compatibility

The aim of this section is to relate the factors P, A of a given $T \in \mathcal{T}$ with compatibility. The notion of compatibility relates a closed subspace ${\mathcal S}$ of \mathcal{H} and a positive operator $A \in \mathcal{L}(\mathcal{H})$. More precisely, the pair (A, \mathcal{S}) is called **compatible** if there exists $Q \in \mathcal{Q}$ with $R(Q) = \mathcal{S}$ such that $AQ = Q^*A$ (this means that Q is Hermitian respect to the semi-inner product induced by A). This notion can be also extended to unbounded projections, in which case the pair (A, \mathcal{S}) is called quasi-compatible if there exists a densely defined closed projection Q onto S such that AQ is symmetric. The quasi-compatibility (resp., compatibility) of a pair (A, \mathcal{S}) is equivalent to $S + (AS)^{\perp} = \mathcal{H}$ (resp. $S + (AS)^{\perp} = \mathcal{H}$). In particular, the notion of compatibility is also equivalent to certain angle condition, more precisely, the Dixmier angle between \mathcal{S}^{\perp} and \overline{AS} is non-zero. Recall that the Dixmier angle between two closed subspaces S_1, S_2 is that whose cosine is $c_0(S_1, S_2) = \sup\{|\langle x, y \rangle| : x \in S_1, y \in S_2, ||x||, ||y|| \le 1\}.$ Therefore, it holds that (A, \mathcal{S}) is compatible if and only if $c_0(\mathcal{S}^{\perp}, \overline{AS}) < 1$. For more results on the theory of compatibility see [7] and references therein. For details on quasi-compatibility see [4].

Given $T \in \mathcal{T}$, we study the quasi-compatibility (resp., compatibility) of the pairs (A, \mathcal{S}) such that $T = P_{\mathcal{S}}A$. We begin by showing that such compatibility is independent of the factors chosen, that is, it depends only on T and not on the particular $P_{\mathcal{S}}$, A.

Proposition 5.1. Let $T = P_{\mathcal{S}}A \in \mathcal{T}$.

- 1. The following conditions are equivalent:
 - (a) (A, S) is quasi-compatible,
 - (b) R(T) + N(T) is a dense subspace of \mathcal{H} ;
 - (c) $R(T^*) \cap N(T^*) = \{0\}.$
- 2. The following conditions are equivalent:
 - (a) (A, S) is compatible;
 - (b) $c_0(\mathcal{S}^{\perp}, \overline{AS}) < 1;$
 - (c) $\overline{R(T)} + N(T) = \mathcal{H};$
 - (d) $R(T^*) + N(T^*) = \mathcal{H}$;
 - (e) $c_0(\overline{R(T)}, N(T)) < 1$.
 - (f) $c_0(R(T^*), N(T^*)) < 1$.

Proof. By Proposition 4.8, $S = \overline{R(T)} \oplus \mathcal{M}$ with $\mathcal{M} \subseteq N(A)$. Then, $(AS)^{\perp} = (A\overline{R(T)})^{\perp} = R(AP_{\overline{R(T)}})^{\perp} = N(P_{\overline{R(T)}}A) = N(T)$.

- 1. If (A, S) is quasi-compatible then $\mathcal{H} = \overline{S + (AS)^{\perp}} = \overline{S + N(T)} \subseteq \overline{R(T)} + \mathcal{M} + N(T) = \overline{R(T)} + N(T)$ because $\mathcal{M} \subseteq N(A) \subseteq N(T)$. The converse is similar. $b \Leftrightarrow c$ follows by taking orthogonal complements.
- 2. $a \Leftrightarrow b$ follows from Theorem 2.15 in [7]. Now, if item a) holds then $\underline{\mathcal{H}} = \mathcal{S} + (A\mathcal{S})^{\perp}$. That is, $\mathcal{H} = \mathcal{S} + N(T) = \overline{R(T)} \oplus \mathcal{M} + N(T) = \overline{R(T)} + N(T)$, where the last equality follows from $\mathcal{M} \subseteq N(A) \subseteq N(T)$. Moreover, by Lemma 3.1, $\mathcal{H} = \overline{R(T)} + N(T)$. Thus, $a \Rightarrow c. c \Leftrightarrow d$ is consequence of Lemma 2.11 in [9]. $d \Rightarrow e$ follows from Theorem 2.15 and Lemma 2.12 in [9]. $e \Rightarrow f$ is also consequence of Lemma 2.12 in [9].

Finally, if item f) holds, as $\overline{R(T^*)} = \overline{AS}$ and $S^{\perp} \subseteq N(T^*)$, then $c_0(\overline{AS}, S^{\perp}) < c_0(\overline{R(T^*)}, N(T^*))$. Therefore, $f \Rightarrow a$ because of Theorem 2.15 in [7].

In the next result, given a positive operator A and a closed subspace S, we characterize the quasi-compatibility of (A, S) in terms of the existence of certain operator in T.

Proposition 5.2. Let $A \in \mathcal{L}^+$ and \mathcal{S} a closed subspace of \mathcal{H} . The pair (A, \mathcal{S}) is quasi-compatible if and only if there exists $T \in \mathcal{T}$ such that $\overline{R(T)} = \overline{AS}$ and $N(T) = (\mathcal{S} \ominus (AS)^{\perp})^{\perp}$.

Proof. If (A, \mathcal{S}) is quasi-compatible then, by [[4], Proposition 2.15] there exists $T \in \mathcal{L}(\mathcal{H})$ such that $TT^*T = T^2$, $\overline{R(T)} = \overline{AS}$ and $N(T) = (S \ominus (AS)^{\perp})^{\perp}$. Then, $(T^*T)^2 = T^*T^2$ and so, by Theorem 3.2, $T \in \mathcal{T}$. Conversely, if there exists $T \in \mathcal{T}$ such that $\overline{R(T)} = \overline{AS}$ and $N(T) = (S \ominus (AS)^{\perp})^{\perp}$ then, by Lemma 3.1, $\overline{AS} \cap (S \ominus (AS)^{\perp})^{\perp} = \{0\}$. So that $S + (AS)^{\perp}$ is dense in \mathcal{H} . Therefore, (A, S) is quasi-compatible.

Given a quasi-compatible pair (A, \mathcal{S}) there exists a distinguished element with optimal properties among all densely defined idempotents Q with domain $\mathcal{S}+(A\mathcal{S})^{\perp}$, $R(Q)=\mathcal{S}$ and AQ symmetric, namely, $P_{A,\mathcal{S}}:=Q_{\mathcal{S}//(A\mathcal{S})^{\perp}\ominus\mathcal{S}}$ (see [4]). If the pair (A,\mathcal{S}) is compatible then $P_{A,\mathcal{S}}$ is bounded.

Proposition 5.3. Let $T \in \mathcal{T}$ be such that $\overline{R(T)} + N(T) = \mathcal{H}$. Therefore, if $T = P_{\mathcal{S}}A$ then (A, \mathcal{S}) is compatible and

$$P_{A,S} = Q_{\overline{R(T)}//N(T)} + P_{\mathcal{M}},$$

where $S = \overline{R(T)} \oplus \mathcal{M}$ and $\mathcal{M} \subseteq N(A)$.

Proof. The compatibility of the pair (A, S) follows from Proposition 5.1. Moreover, by Proposition 4.8, $S = \overline{R(T)} \oplus \mathcal{M}$ with $\mathcal{M} \subseteq N(A)$. Now, define $E = Q_{\overline{R(T)}//N(T)} + P_{\mathcal{M}}$. Since $\mathcal{M} \subseteq N(T)$ and $\mathcal{M} \perp \overline{R(T)}$ then $E^2 = E$. Furthermore, $AE = E^*A$. Indeed, since $N(T) = (A\overline{R(T)})^{\perp}$ then $AQ_{\overline{R(T)}//N(T)} = Q_{\overline{R(T)}//N(T)}^*A$. Now, since $AE = AQ_{\overline{R(T)}//N(T)}$ we get that $AE = E^*A$. In addition, it is clear that $R(E) \subseteq S$. Hence, it remains to show that $N(E) = N(P_{A,S})$. Observe that $N(P_{A,S}) = (AS)^{\perp} \cap ((AS)^{\perp} \cap S)^{\perp} = N(T) \cap (N(T) \cap (\overline{R(T)} + \mathcal{M}))^{\perp} = N(T) \cap (N(T) \cap \mathcal{M})^{\perp} = N(T) \cap \mathcal{M}^{\perp}$. Now, we prove the equality $N(E) = N(T) \cap \mathcal{M}^{\perp}$. Clearly, $N(T) \cap \mathcal{M}^{\perp} \subseteq N(E)$. For the other inclusion, if $x \in N(E)$ then $Q_{\overline{R(T)}//N(T)}x = -P_{\mathcal{M}}x \in \overline{R(T)} \cap \mathcal{M} = \{0\}$. So that $x \in N(T) \cap \mathcal{M}^{\perp}$. Then $N(E) = N(P_{A,S})$ and so $E = P_{A,S}$. \square

Remark 5.4. Given $T \in \mathcal{T}$ such that $\overline{R(T)} + N(T)$ is a dense subspace of \mathcal{H} then, by Proposition 5.1, the pair (A, \mathcal{S}) is quasi-compatible for all A, \mathcal{S} such that $T = P_{\mathcal{S}}A$. In this case,

$$P_{A,S} = Q_{\overline{R(T)}//N(T)} + P_{\mathcal{M}}|_{\overline{R(T)}+N(T)}.$$

Corollary 5.5. Let $T \in \mathcal{T}_{cr}$. Then,

- 1. if $T = P_{\mathcal{S}}A$ then (A, \mathcal{S}) is compatible;
- 2. (A, R(T)) is compatible for all $A \in \mathcal{T}_T^+$ and $P_{A,R(T)} = P(A_T P)^{\dagger} A_T$ where $P = P_{R(T)}$.

Proof. It follows from Theorem 3.3 and Propositions 4.3 and 5.3. \Box

6. Polar decomposition

This section is devoted to the study of the polar decomposition of the operators in \mathcal{T} . For this, given $T \in \mathcal{L}(\mathcal{H})$ we shall denote by V_T the partial isometry of the polar decomposition of T, i.e, $V_T \in \mathcal{J} = \{V \in \mathcal{L}(\mathcal{H}) : VV^*V = V\}$ and $T = V_T|T|$ with $N(V_T) = N(T)$ and $|T| = (T^*T)^{1/2}$. In addition, given a class of operators \mathcal{M} , we denote

$$\mathcal{J}_{\mathcal{M}} = \{ V \in \mathcal{J} : \text{there exists } T \in \mathcal{M} \text{ such that } V = V_T \}.$$

The sets $\mathcal{J}_{\mathcal{Q}}$ and $\mathcal{J}_{\mathcal{P}.\mathcal{P}}$ have been studied in [5] and [6], respectively. Our goal in this section is to describe the set $\mathcal{J}_{\mathcal{T}}$.

Proposition 6.1. The following relations hold:

- 1. $\mathcal{T} \cap \mathcal{J} = \mathcal{J}_{\mathcal{O}}$;
- 2. $\mathcal{J}_{\mathcal{Q}} \subseteq \mathcal{J}_{\mathcal{P} \cdot \mathcal{P}} \subseteq \mathcal{J}_{\mathcal{T}}$.

Proof. 1. If follows from [5], Theorem 5.1.

2. The first inclusion can be deduced from [5], [6]. In fact, if $E \in \mathcal{Q}$ then $E^{\dagger} = P_{N(E)^{\perp}}P_{R(E)}$ by a result of Penrose [20] (see also Greville [13] or Vidav [24]): the reader can easily check that $X = P_{N(E)^{\perp}}P_{R(E)}$ satisfy the four Penrose conditions $EXE = E, XEX = X, (XE)^* = XE, (EX)^* = EX$. This shows that $\mathcal{Q}^{\dagger} \subseteq \mathcal{P} \cdot \mathcal{P}$ and, therefore, $\mathcal{J}_{\mathcal{Q}^{\dagger}} \subseteq \mathcal{J}_{\mathcal{P} \cdot \mathcal{P}}$. On the other side, for any class $\mathcal{M} \subseteq \mathcal{L}(\mathcal{H})$, the properties of the standard polar decomposition show that $\mathcal{J}_{\mathcal{M}^{\dagger}} = \mathcal{J}_{\mathcal{M}^*}$. Since Q is closed by the adjoint operation, we get $\mathcal{J}_{\mathcal{Q}} = \mathcal{J}_{\mathcal{Q}^{\dagger}} \subseteq \mathcal{J}_{\mathcal{P} \cdot \mathcal{P}}$ as claimed. The second inclusion is consequence of $\mathcal{P} \cdot \mathcal{P} \subset \mathcal{T}$.

Proposition 6.2. Let $A \in \mathcal{G}^+$. Then, $PA \in \mathcal{J}_{\mathcal{Q}}$ for some $P \in \mathcal{P}$ if and only if $A|_{\mathcal{S}}$ is an isometry for some closed subspace \mathcal{S} .

Proof. Suppose that $PA \in \mathcal{J}_{\mathcal{Q}}$ for some $P \in \mathcal{P}$. Then, $P = PA(PA)^* = PA^2P$ and so, $(PA^2)^2 = PA^2PA^2 = PA^2$, i.e, $PA^2 \in \mathcal{Q}$ and the result follows by Proposition 4.6. Conversely, if $A|_{\mathcal{S}}$ is an isometry for some closed subspace \mathcal{S} then, by Proposition 4.6, $PA^2 \in \mathcal{Q}$. Moreover, $R(PA^2) = R(P)$ because $A \in \mathcal{G}$. Hence, $PA(PA)^*PA = PA^2PA = PA$, i.e, $PA \in \mathcal{J} \cap \mathcal{T} = \mathcal{J}_{\mathcal{Q}}$.

Proposition 6.3. Let $T \in \mathcal{T}$. Then $V_T^*A = |T|$ for all $A \in \mathcal{T}_T^+$ and $|T|V_T \in \mathcal{L}^+$.

Proof. Let $T = P_{\overline{R(T)}}A = V_T|T|$, i.e, $V_TV_T^*A = V_T|T|$. Hence, $V_T^*A = V_T^*V_TV_T^*A = V_T^*V_T|T| = |T|$ and so $|T|V_T = V_T^*AV_T \in \mathcal{L}^+$.

Proposition 6.4.

 $\mathcal{J}_{\mathcal{T}} = \{ V \in \mathcal{J} : \exists A \in \mathcal{L}^+ \text{ such that } AV \in \mathcal{L}^+ \text{ and } R(V) \cap N(A) = \{0\} \}.$

Proof. Consider $T = V_T | T | \in \mathcal{T}$. Therefore, by Proposition 6.3, $AV_T = |T| \in \mathcal{L}^+$ for all $A \in \mathcal{T}_T^+$. In addition, $N(AV_T) = N(|T|) = N(T)$. Therefore, if $y \in R(V_T) \cap N(A)$ then $y = V_T x$ for some $x \in \mathcal{H}$ and $Ay = AV_T x = 0$, i.e.,

 $x \in N(AV_T) = N(T) = N(V_T)$. So, $y = V_T x = 0$ and the first inclusion is proved.

Conversely, let $V \in \mathcal{J}$ such that $AV \in \mathcal{L}^+$ for some $A \in \mathcal{L}^+$ with $R(V) \cap N(A) = \{0\}$. Define $T := VV^*A \in \mathcal{T}$. Then, $T^*T = AVV^*VV^*A = AVV^*A = (V^*A)^2$, i.e., $|T| = V^*A$. Moreover, $N(T) = N(|T|) = N(V^*A) = N(AV) = N(V)$ where the last equality holds because $R(V) \cap N(A) = \{0\}$. Therefore VV^*A is the polar decomposition of $T \in \mathcal{T}$ and so $V \in \mathcal{J}_{\mathcal{T}}$.

Given two operators $T, S \in \mathcal{L}(\mathcal{H})$ we write $T \sim_+ S$ if there exists $A \in \mathcal{G}^+$ such that $T = A^{-1}SA$.

Corollary 6.5.

$$\mathcal{J}_{\mathcal{T}_{cr}} = \{ V \in \mathcal{J} : \exists A \in \mathcal{G}^+ \text{ such that } AV \in \mathcal{L}^+ \}$$
$$= \{ V \in \mathcal{J} : V \sim_+ B \text{ for some } B \in L(\mathcal{H})^+ \}.$$

Proof. Let us prove the first equality. Consider $T = V_T | T | \in \mathcal{T}_{cr}$. Then, by Theorem 3.3, there exists $A \in \mathcal{G}^+$ such that $T = V_T V_T^* A = V_T | T |$. So $V_T^* A = |T| \in L(\mathcal{H})^+$ with $A \in \mathcal{G}^+$.

For the other inclusion, let $V \in \mathcal{J}$ such that $AV \in L(\mathcal{H})^+$ for some $A \in \mathcal{G}^+$. Define $T := VV^*A$. Clearly, $T \in \mathcal{T}_{cr}$. Moreover, it is straightforward that $|T| = V^*A$ and N(V) = N(T).

For the second equality, note that $AV \geq 0$ for some $A \in \mathcal{G}^+$ if and only if $A^{1/2}VA^{-1/2} = B \geq 0$, i.e., $V \sim_+ B$ with $B \geq 0$.

- [1] A. Arias, S. Gudder; Almost sharp quantum effects; J. Math. Phys. 45(2004), 4196-4206.
- [2] M.L. Arias, G. Corach, M.C. Gonzalez; Generalized inverses and Douglas equations, Proc. Am. Math. Soc. 136 (2008), 3177-3183.
- [3] M. L. Arias, and M. C. Gonzalez; Reduced solutions of Douglas type equations and angles between subspaces, J. Math. Anal. Appl. 355 (2009), 426-433.
- [4] G. Corach, M. C. Gonzalez, A. Maestripieri; Unbounded symmetrizable idempotents, Linear Algebra Appl. 437 (2012), 659-674.
- [5] G. Corach, A. L. Maestripieri; Polar decomposition of oblique projections, Linear Algebra Appl. 433 (2010), 511-519.

- [6] G. Corach, A. L. Maestripieri; Products of orthogonal projections and polar decompositions Linear Algebra Appl. 434 (2011), 1594-1609.
- [7] G. Corach, A. Maestripieri, D. Stojanoff; A classification of projectors, Banach Center Publications 67 (2005), 145-160.
- [8] C. Davis; Separation of two linear subspaces, Acta Sci. Math. (Szeged) 19 (1958), 172-187.
- [9] F. Deutsch; The angles between subspaces of a Hilbert space, in S.P. Singh (Ed.), Approximation Theory, Wavelets and Applications, Kluwer, Netherlands (1995), 107-130.
- [10] R. G. Douglas; On majorization, factorization and range inclusion of operators in Hilbert spaces, Proc. Am. Math. Soc. 17 (1966) 413-416.
- [11] P. A. Fillmore and J. P. Williams; On operator ranges, Advances in Math. 7 (1971), 254-281.
- [12] J. I. Fujii and T. Furuta; Holub's factorization and normal approximants of idempotent operators, Math. Japonica 25 (1980), 143-145.
- [13] T. N. E. Greville; Solutions of the matrix equation XAX = X, and relations between oblique and orthogonal projectors, SIAM J. Appl. Math. 26 (1974), 828-832.
- [14] J. R. Holub; A note on Wiener-Hopf operators and projections, Math. Japonica 25 (1980), 31-32.
- [15] J. R. Holub; Wiener-Hopf operators and projections II, Math. Japonica 25 (1980), 251-253.
- [16] J. R. Holub; On invertibility of Wiener-Hopf operators, Math. Japonica 25 (1980), no. 3, 341-343.
- [17] S. Nelson, M. Neumann; Generalizations of the projection method with applications to SOR theory for Hermitian positive semidefinite linear systems, Numer. Math. 51 (1987), 123-141.
- [18] T. Oikhberg; Products of orthogonal projections, Proc. Amer. Math. Soc.127 (1999), 3659-3669.

- [19] E. L. Pekarev and J. L.Šmul'jan; Parallel addition and parallel substraction of operators, Math. USSR Izvestija 10 (1976), 351-370.
- [20] R. Penrose; A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51 (1955), 406-413.
- [21] H. Radjavi, J. P. Williams; Products of self-adjoint operators. Michigan Math. J. 16 (1969), 177-185.
- [22] Z. Sebestyén; Restrictions of positive operators, Acta Sci.Math. 46 (1983), 299-301.
- [23] J. L. Šmul'jan; A Hellinger operator integral. (Russian) Mat. Sb. (N.S.) 49 (91) (1959), 381-430. English transl. AMS Transl. 22 (1962), 289-337.
- [24] I. Vidav; On idempotent operators in a Hilbert space, Publ. Inst. Math.(Beograd) (N.S.) 4 (18) (1964), 157-163.
- [25] P.Y. Wu; The operator factorization problems, Linear Algebra Appl. 117 (1989), 35-63.