Unbounded symmetrizable idempotents

Gustavo Corach, Celeste Gonzalez and Alejandra Maestripieri *

Abstract

The relationship between closed unbounded idempotents and dense decompositions of a Hilbert space is explored by extending the notion of compatibility between closed subspaces and positive bounded operators.

Keywords: unbounded idempotents, angles between subspaces, compatibility

2000 AMS Subject Classifications: 46C05, 47A05, 47A30

1 Introduction

Bounded linear projections on \mathcal{H} are naturally identified with different sum decompositions $\mathcal{H}=$ $\mathcal{S} + \mathcal{T}$, where \mathcal{S} and \mathcal{T} are closed subspaces of \mathcal{H} with $\mathcal{S} \cap \mathcal{T} = \{0\}$. In this case, the norm of the projection $P_{\mathcal{S}/\mathcal{T}}$ with range \mathcal{S} and nullspace \mathcal{T} is $1/\sin(\theta)$, where θ is the Dixmier angle between \mathcal{S} and \mathcal{T} (see definition in Section 2). However, the projection $P_{\mathcal{S}//\mathcal{T}}$ is well defined on $\mathcal{S} + \mathcal{T}$ even if S + T is only a proper dense subspace of H with zero angle between S and T. In this case, $P_{S/T}$ is an unbounded projection which is closed in the sense that its graph is a closed subspace of $\mathcal{H} \times \mathcal{H}$ (or, equivalently, its range and nullspace are closed subspaces of \mathcal{H} , see [37]). Closed unbounded projections appear in several different contexts. We only mention two of them. In the study of Krein spaces, a symmetric projection with respect to the fundamental symmetry J is bounded (for the subjacent Hilbert space structure) if and only if its range is regular (Langer [34], Ando [3]). Thus, a non degenerated closed subspace S which is not regular induces an unbounded J-symmetric closed projection with range S and nullspace $S^{[\perp]}$ (Gheondea [24], Maestripieri and Martínez-Pería [36]), where $\mathcal{S}^{[\perp]}$ denotes the *J*-orthogonal complement of \mathcal{S} . In a different setting, the Moore-Penrose pseudoinverse of PQ, where P,Q are orthogonal projections in a Hilbert space, is a closed projection which is bounded if and only if the range of PQ is closed (Greville [23], Corach and Maestripieri [14]).

Our motivation for the study of closed unbounded projections is the following. Let \mathcal{H} be a Hilbert space, \mathcal{S} a closed subspace of \mathcal{H} and A a positive (semidefinite bounded) operator acting on \mathcal{H} . It is said that \mathcal{S} and A are compatible if there exists some (bounded linear) projection with range \mathcal{S} which is Hermitian with respect to the sesquilinear form defined by A. In many recent papers this notion has proved useful for studying problems on splines [16], frames [6], selfadjoint projections in Krein spaces [36], approximation [11], Schur complements [17], sampling [5] and so on. The condition has been implicitly used by Sard in 1950 (see [43] and [11]), and, more recently, it has been studied, for a selfadjoint operator A, by Hassi and Nordström [27]. The compatibility condition depends on an angle between \mathcal{S}^{\perp} and the closure of $A\mathcal{S}$. More precisely, \mathcal{S} and A are compatible if and only if the Friedrichs angle (see the definition in Section 2) between \mathcal{S}^{\perp} and $\overline{A}\mathcal{S}$ is not zero; or, equivalently if $\mathcal{S} + (A\mathcal{S})^{\perp} = \mathcal{H}$. It turns out that, among non compatible pairs,

^{*}Partially supported by PICT 6752 FONCYT and UBACYT I023.

there is a class which has a "quasi-compatibility" property. A pair S, A is called quasi-compatible if there exists an unbounded closed projection with range \mathcal{S} and nullspace contained in $(A\mathcal{S})^{\perp}$; or equivalently, if the subspace $S+(AS)^{\perp}$ is dense in \mathcal{H} . The main goal of this paper is the study of this general notion and its applications. Section 2 contains some preliminaries and a quite complete description of all pairs of closed subspaces with some properties which appear in the different compatibility notions. Many of the results of Section 2 are well-known. However, we present some new results which are relevant for the subsequent sections. There is also a description of closed unbounded projections which is needed in the sequel. Section 3 is devoted to describe unbounded projections which are A-symmetric for a given positive bounded operator A. We show that the injectivity or invertibility of $P_1 + P_2$ and $P_1 - P_2$ or properties of $||P_1 + P_2 - I||$ and $||P_1 P_2||$ (for a convenient choice, in each case, of the orthogonal projections P_1, P_2 give equivalent conditions for the compatibility and quasi-compatibility of a given pair \mathcal{S} , A as before. In addition, we describe the set $\mathcal{P}(A,\mathcal{S})$ of all A-symmetric projections with range \mathcal{S} . We also prove the existence of a distinguished $P_{A,S} \in \mathcal{P}(A,S)$ with several nice properties. Section 4 shows how to calculate, more o less explicitely, the projection $P_{A,S}$. Finally, Section 5 contains applications of quasi-compatibility to abstract interpolation, splines and least squares problems.

2 On sums and differences of orthogonal projections

In this paper, \mathcal{H} is an infinite dimensional separable Hilbert space, $L(\mathcal{H})$ denotes the algebra of all bounded linear operators from \mathcal{H} to \mathcal{H} and $L(\mathcal{H})^+$ the cone of bounded linear positive operators of $L(\mathcal{H})$. Given a densely defined linear operator $T:\mathcal{D}(T)\subseteq\mathcal{H}\longrightarrow\mathcal{H},\ R(T)$ and N(T) denote the range and the nullspace of T, respectively. Throughout, \mathcal{S} and \mathcal{T} denote two closed subspaces of \mathcal{H} . By $\mathcal{S}+\mathcal{T}$ we denote the direct sum between them and by $\mathcal{S}\oplus\mathcal{T}$ the orthogonal sum. Furthermore, $\mathcal{S}\ominus\mathcal{T}=\mathcal{S}\cap(\mathcal{S}\cap\mathcal{T})^{\perp}$. If $\mathcal{S}\cap\mathcal{T}=\{0\},\ P_{\mathcal{S}//\mathcal{T}}$ denotes the (not necessarily bounded) projection (or idempotent) onto \mathcal{S} with nullspace \mathcal{T} and $P_{\mathcal{S}}=P_{\mathcal{S}//\mathcal{S}^{\perp}}$ is the orthogonal projection onto \mathcal{S} .

The angle of Friedrichs between the subspaces \mathcal{S} and \mathcal{T} is the angle $\theta(\mathcal{S}, \mathcal{T})$ in $[0, \frac{\pi}{2}]$ whose cosine is defined by

$$c(\mathcal{S}, \mathcal{T}) = \sup\{|\langle \xi, \eta \rangle| : \xi \in \mathcal{S} \ominus \mathcal{T}, \eta \in \mathcal{T} \ominus \mathcal{S}; \|\xi\|, \|\eta\| \le 1\},\$$

and the angle of Dixmier between the subspaces S and T is the angle $\theta_0(S, T)$ in $[0, \frac{\pi}{2}]$ whose cosine is defined by

$$c_0(\mathcal{S}, \mathcal{T}) = \sup\{|\langle \xi, \eta \rangle| : \xi \in \mathcal{S}, \eta \in \mathcal{T}; ||\xi||, ||\eta|| \le 1\}.$$

Observe that $c_0(S, T)$ gives a sharp bound for the Cauchy-Schwarz inequality, in the sense that $|\langle \xi, \eta \rangle| \leq c_0(S, T) \|\xi\| \|\eta\|$ for every $\xi \in S$, $\eta \in T$. For many results on these notions of angles we refer the reader to the survey of Deutsch [19] and his book [20]. Here we collect some facts of [19] and [20] that we shall use along these notes:

Proposition 2.1. The following assertions hold:

- 1. $0 \le c(\mathcal{S}, \mathcal{T}) \le c_0(\mathcal{S}, \mathcal{T}) \le 1$;
- 2. If $S \cap T = \{0\}$ then $c(S, T) = c_0(S, T)$;
- 3. $c_0(S,T) = ||P_S P_T||;$
- 4. $c(\mathcal{S}, \mathcal{T}) = ||P_{\mathcal{S}}P_{\mathcal{T}} P_{\mathcal{S} \cap \mathcal{T}}||;$
- 5. $c(\mathcal{S}, \mathcal{T}) = c(\mathcal{S}^{\perp}, \mathcal{T}^{\perp}).$

We start studying the operators $P_{\mathcal{S}} + P_{\mathcal{T}}$ and $P_{\mathcal{S}} - P_{\mathcal{T}}$. Observe that the first one is positive and the second one is selfadjoint. These operators verify the following properties:

Proposition 2.2. The following assertions hold:

1.
$$R((P_S + P_T)^{1/2}) = S + T$$
;

2.
$$N(P_{\mathcal{S}} + P_{\mathcal{T}}) = \mathcal{S}^{\perp} \cap \mathcal{T}^{\perp};$$

3.
$$N(P_{\mathcal{S}} - P_{\mathcal{T}}) = \mathcal{S} \cap \mathcal{T} \oplus \mathcal{S}^{\perp} \cap \mathcal{T}^{\perp}$$
;

4.
$$(P_S - P_T)^2 + (P_S + P_T - I)^2 = I$$
;

5.
$$||P_S - P_T|| = \max\{||P_S(I - P_T)||, ||P_T(I - P_S)||\};$$

6.
$$||P_{\mathcal{S}} + P_{\mathcal{T}} - I|| \le 1$$
.

The first identity follows applying [[22], Theorem 2.2]. $N(P_{\mathcal{S}} + P_{\mathcal{T}}) = \mathcal{S}^{\perp} \cap \mathcal{T}^{\perp}$ is evident. A proof for item 3 can be found in [[33], Lemma 2.2]. Observe that if $\mathcal{S} \cap \mathcal{T} = \{0\}$ then it holds $N(P_{\mathcal{S}} + P_{\mathcal{T}}) = N(P_{\mathcal{S}} - P_{\mathcal{T}}) = \mathcal{S}^{\perp} \cap \mathcal{T}^{\perp}$. On the other hand, identity $(P_{\mathcal{S}} - P_{\mathcal{T}})^2 + (P_{\mathcal{S}} + P_{\mathcal{T}} - I)^2 = I$, which follows by computation, is due to Kato ([29], [30]) and it is equivalent to

$$\|(P_{\mathcal{S}} - P_{\mathcal{T}})\xi\|^2 + \|(P_{\mathcal{S}} + P_{\mathcal{T}} - I)\xi\|^2 = \|\xi\|^2 \text{ for every } \xi \in \mathcal{H}.$$
 (1)

Item 5 is the Krein-Krasnoselskii-Milman equality and its proof can be found in [1], [28] and [32].

Observe that $P_{\mathcal{S}} + P_{\mathcal{T}} - I = P_{\mathcal{S}} - P_{\mathcal{T}^{\perp}}$. Observe also that, for orthogonal projections P_1 and P_2 there are three alternatives for the norm of $P_1 - P_2 : a$ $||P_1 - P_2|| < 1$; $p_1 - P_2 = 1$ but the norm is not attained; and $p_2 = 1$ there exists $p_2 = 1$ with $||p_2 = 1|$ and $||p_2 = 1|$ we shall prove in Section 3 that these three alternatives (for a convenient choice of $p_1 = 1$ and $p_2 = 1$) describe the different notions of compatibility. The next theorem collects several sets of equivalent conditions which are central for the different types of compatibility. Most of these results are well-known, and we briefly indicate their proofs; for the new results we include complete proofs. We start with a simple lemma.

Lemma 2.3. $S \cap T \neq \{0\}$ if and only if there exists $0 \neq \xi \in \mathcal{H}$ such that $||P_S P_T \xi|| = ||\xi||$.

Proof. It is clear that if $S \cap T \neq \{0\}$ then there exists $\xi \neq 0$ such that $\|P_S P_T \xi\| = \|\xi\|$. Conversely, if there exists $\xi \neq 0$ such that $\|P_S P_T \xi\| = \|\xi\|$ then $\|\xi\|^2 \geq \|P_T \xi\|^2 = \|P_S P_T \xi\|^2 + \|P_{S^{\perp}} P_T \xi\|^2 = \|\xi\|^2 + \|P_{S^{\perp}} P_T \xi\|^2 \geq \|\xi\|^2$. So, $\|P_{S^{\perp}} P_T \xi\| = 0$ and, in consequence, $P_S P_T \xi = P_T \xi$. Also, $\|\xi\|^2 = \|P_T \xi\|^2 + \|P_{T^{\perp}} \xi\|^2 = \|\xi\|^2 + \|P_{T^{\perp}} \xi\|^2$. Then $\|P_{T^{\perp}} \xi\|^2 = 0$. Therefore $\xi \in \mathcal{T}$ and $\xi = P_T \xi = P_S P_T \xi$, so that $\xi \in \mathcal{S}$. Then $\xi \in \mathcal{S} \cap \mathcal{T}$.

Theorem 2.4.

- 1. S + T is closed $\Leftrightarrow c(S, T) < 1 \Leftrightarrow P_S + P_T$ has closed range $\Leftrightarrow P_S P_T$ has closed range.
- 2. $\overline{S+T} = \mathcal{H} \Leftrightarrow S^{\perp} \cap T^{\perp} = \{0\} \Leftrightarrow \overline{P_{S^{\perp}}(T)} = S^{\perp} \Leftrightarrow \overline{P_{T^{\perp}}(S)} = T^{\perp} \Leftrightarrow P_{S} + P_{T} \text{ is an injective operator.}$
- 3. $S + T = \mathcal{H} \Leftrightarrow P_S + P_T$ is invertible $\Leftrightarrow N(P_S P_T) = S \cap T$ and $R(P_S P_T)$ is closed $\Leftrightarrow c_0(S^{\perp}, T^{\perp}) < 1 \Leftrightarrow ||P_{S^{\perp}}P_{T^{\perp}}|| < 1$.
- 4. $\overline{S+T}$ is a proper subspace $\Leftrightarrow S^{\perp} \cap T^{\perp} \neq \{0\} \Leftrightarrow \text{there exists } \xi \neq 0 \text{ such that } ||P_{S^{\perp}}P_{T^{\perp}}\xi|| = ||\xi||$ (and then $||P_{S^{\perp}}P_{T^{\perp}}|| = 1$).

- 5. S + T is a proper dense subspace $\Leftrightarrow P_S + P_T$ is injective non invertible $\Leftrightarrow N(P_S P_T) = S \cap T$ and $R(P_S P_T)$ is non closed $\Leftrightarrow \|P_{S^{\perp}}P_{T^{\perp}}\| = 1$ but for every $\xi \neq 0$ it holds that $\|P_{S^{\perp}}P_{T^{\perp}}\xi\| < \|\xi\|$.
- 6. S + T is a proper closed subspace $\Leftrightarrow c(S, T) < 1$ and $S^{\perp} \cap T^{\perp} \neq \{0\}$.
- If, in addition, $S \cap T = \{0\}$ then
 - 7. $S + T = \mathcal{H} \Leftrightarrow \text{there exists a densely defined closed idempotent } P_{S//T} \Leftrightarrow P_S P_T \text{ is an injective operator.}$
 - 8. $S + T = \mathcal{H} \Leftrightarrow there \ exists \ a \ bounded \ linear \ idempotent \ P_{S//T} \Leftrightarrow ||P_S + P_T I|| < 1.$
 - 9. S + T is a proper subspace $\Leftrightarrow P_S + P_T$ is not injective \Leftrightarrow there exists $\xi \neq 0$ such that $\|(P_S + P_T I)\xi\| = \|\xi\|$.
 - 10. S + T is a proper dense subspace $\Leftrightarrow \|P_S + P_T I\| = 1$ but for every $\xi \neq 0$ it holds that $\|(P_S + P_T I)\xi\| < \|\xi\| \Leftrightarrow \|P_S P_T\| = 1$ and $S^{\perp} \cap T^{\perp} = \{0\} \Leftrightarrow \|P_{S^{\perp}} P_{T^{\perp}}\| = 1$ and $S^{\perp} \cap T^{\perp} = \{0\}$.
 - 11. S + T is a proper closed subspace $\Leftrightarrow ||P_S P_T|| < 1$ and $||P_{S^{\perp}} P_{T^{\perp}}|| = 1 \Leftrightarrow ||P_S P_T|| < 1$ and $||P_S + P_T I|| = 1$.

Proof.

- 1. The first equivalence is proven in [[19], Theorem 13]. The rest of the assertions are proven in [[22], Theorem 2.2] and [[33], Lemma 2.4].
- 2. It follows from [[19], Lemma 11 and Theorem 13], [[35], Lemma 2.1] and item 2 of Proposition 2.2.
- 3. The first three equivalences follow by combining items 1 and 2. The last equivalence follows from Proposition 2.1.
 - 4. The first equivalence follows applying item 2. The second one is Lemma 2.3.

Item 5 follows from items 1, 2 and 4. Item 6 follows from [[19], Lemma 11 and Theorem 12].

7. The first equivalence is proven in [[37], Lemma 3.5]. On the other hand, since $S \cap T = \{0\}$ then $N(P_S - P_T) = S^{\perp} \cap T^{\perp}$. Now $S + T = \mathcal{H}$ if and only if $\{0\} = S^{\perp} \cap T^{\perp} = N(P_S - P_T)$ if and only if $P_S - P_T$ is injective.

Item 8 is proven in [9], Theorem 1].

Item 9 follows from item 2 of this proposition, items 2 and 3 of Proposition 2.2 and identity (1).

10. Suppose $S \dotplus T$ dense and non closed. Since $S \dotplus T$ is direct and dense, it holds that $S \cap T = \{0\}$ and $S^{\perp} \cap T^{\perp} = \{0\}$. Then, by item 3 of Proposition 2.2, $N(P_S - P_T) = \{0\}$. Therefore, by (1), $\|(P_S + P_T - I)\xi\| < \|\xi\|$ for every $\xi \neq 0$ and since $S \dotplus T$ is not closed, by item 8, $\|P_S + P_T - I\| = 1$. Conversely, if $\|(P_S + P_T - I)\xi\| < \|\xi\|$ for every $\xi \neq 0$, by (1), the operator $P_S - P_T$ is injective. So, by item 3 of Proposition 2.2, $S \dotplus T$ is dense. But, since $\|P_S + P_T - I\| = 1$ then $S \dotplus T$ is dense non closed and the first equivalence follows. On the other hand, since $S \cap T = \{0\}$ then $S \dotplus T$ is dense non closed if and only if $c_0(S,T) = 1$ and $S^{\perp} \cap T^{\perp} = \{0\}$ or, equivalently, $\|P_S P_T\| = 1$ and $S^{\perp} \cap T^{\perp} = \{0\}$. The proof that $S \dotplus T$ is dense non closed if and only if $\|P_{S \downarrow} P_{T \downarrow}\| = 1$ and $S^{\perp} \cap T^{\perp} = \{0\}$ is similar.

Item 11 follows from the Krein-Krasnoselskii-Milman equality.

Remark 2.5. In a recent paper, Ando [4] found several nice formulae for the (may be unbounded) projection with nullspace \mathcal{T} and range \mathcal{S} provided that $\mathcal{S} + \mathcal{T}$ is dense in \mathcal{H} . Ando proves that if E is a densely defined projection with closed range \mathcal{S} and closed nullspace \mathcal{T} then E is bounded if and only if $P_{\mathcal{S}} + P_{\mathcal{T}}$ is invertible. In such case it holds $E = P_{\mathcal{S}}(P_{\mathcal{S}} + P_{\mathcal{T}})^{-1}$. Moreover, E is not bounded if and only if $P_{\mathcal{S}} + P_{\mathcal{T}}$ is not invertible and, in this case, $E = P_{\mathcal{S}}(P_{\mathcal{S}} + P_{\mathcal{T}})^{-1/2}(P_{\mathcal{S}} + P_{\mathcal{T}})^{-1/2}$. Compare these formulae with that one of Greville [14] $E = (P_{\mathcal{T}} + P_{\mathcal{S}})^{\dagger}$.

2.1 Closed unbounded projections

Let T be a densely defined operator from \mathcal{H} to \mathcal{H} . It is said that T is closed if its graph is a closed subspace of $\mathcal{H} \times \mathcal{H}$ and T is called closable if it admits a closed extension (i.e. if there exists a closed linear operator T_1 such that $T \subset T_1$ or, which is the same, $\mathcal{D}(T) \subset \mathcal{D}(T_1)$ and $T\xi = T_1\xi$ for every $\xi \in \mathcal{D}(T)$). Every closable operator T has a smallest closed extension called the closure which is denoted \overline{T} . On the other hand, it is well known that a densely defined operator Q is an idempotent if $R(Q) \subseteq \mathcal{D}(Q)$ and $Q^2\xi = Q\xi$ for all $\xi \in \mathcal{D}(Q)$. In such case, $\mathcal{D}(Q) = R(Q) + N(Q)$. It holds that Q is closed if and only if Q and Q are closed subspaces. If the idempotent Q is closable then \overline{Q} and Q^* are closed idempotents and it holds that $\overline{Q} = Q_{\overline{R(Q)}//\overline{N(Q)}}$, $R(Q^*) = N(Q)^{\perp}$ and $N(Q^*) = R(Q)^{\perp}$. Furthermore, an idempotent Q is bounded if and only if Q is closed and $\mathcal{D}(Q) = \mathcal{H}$. A classical reference for unbounded projections is Ota's paper [37]. We also refer the reader to the papers by Popovych [38], Samoilenko and Turowska [42], Booß et al. [8] and Ando [4]. We finish this section by giving a characterization of closed densely defined idempotents in terms of matrix representations. The following result allows to get a matrix representation of unbounded operators (see [4] and [14] for the proof).

Lemma 2.6. If $Q = Q_{S//\mathcal{T}}$ is a closed idempotent then $\mathcal{D}(Q) = S + \mathcal{T} = S \oplus P_{S^{\perp}}(\mathcal{T})$.

A related matrix form to the next one can be found in the paper by Ando [4].

Proposition 2.7. Consider the decomposition $\mathcal{H} = \mathcal{S} \oplus \mathcal{S}^{\perp}$. If

$$Q = \begin{pmatrix} 1 & x \\ 0 & 0 \end{pmatrix}, \tag{2}$$

where 1 denotes the identity operator of S and $x : \mathcal{D}(x) \subseteq S^{\perp} \longrightarrow S$ is a densely defined linear operator, then the following assertions hold:

- 1. $Q: \mathcal{S} \oplus \mathcal{D}(x) \longrightarrow \mathcal{S}$ is a densely defined idempotent with $R(Q) = \mathcal{S}$.
- 2. The idempotent Q is closed if and only if $\Gamma(x)$ (the graph of x) is closed.
- 3. If the idempotent Q is closed then $Q^* = \begin{pmatrix} 1|_{\mathcal{D}(x^*)} & 0 \\ x^* & 0 \end{pmatrix}$ on $\mathcal{D}(x^*) \oplus \mathcal{S}^{\perp}$.

Proof.

- 1. It is easy to check that $\mathcal{D}(Q) = \mathcal{S} \oplus \mathcal{D}(x)$ is dense in \mathcal{H} and $R(Q) = \mathcal{S}$. Then Q^2 is well defined because $R(Q) \subseteq \mathcal{D}(Q)$ and $Q^2 = Q$. So the assertion follows.
- 2. This equivalence is an immediate consequence of the fact that N(Q) and $\Gamma(x)$ are isometrically isomorph. In fact, $N(Q) = \{-x\omega + \omega : \omega \in \mathcal{D}(x)\}$ and $T : N(Q) \longrightarrow \Gamma(x)$ defined by $T(-x\omega + \omega) = (\omega, x\omega)$ is an isometric isomorphism.
- 3. Since Q is a densely defined closed idempotent we know that Q^* is a closed densely defined projection too. In addition, as $\mathcal{D}(Q) = \mathcal{S} \oplus \mathcal{D}(x)$ then $\mathcal{D}(Q^*) = \mathcal{D}(x^*) \oplus \mathcal{S}^{\perp}$. In fact, if $\xi = \xi_1 + \xi_2 \in \mathcal{D}(x)$

 $\mathcal{D}(Q^*), \text{ where } \xi_1 \in \mathcal{S} \text{ and } \xi_2 \in \mathcal{S}^\perp \text{ then there exists } \rho = \rho_1 + \rho_2, \text{ where } \rho_1 \in \mathcal{S} \text{ and } \rho_2 \in \mathcal{S}^\perp \text{ such that } \langle Q\omega, \xi \rangle = \langle \omega, \rho \rangle \text{ for every } \omega = \omega_1 + \omega_2 \in \mathcal{D}(Q), \text{ where } \omega_1 \in \mathcal{S} \text{ and } \omega_2 \in \mathcal{D}(x). \text{ In particular, for every } \omega = \omega_2 \text{ we get } \langle x\omega_2, \xi_1 \rangle = \langle Q\omega_2, \xi_1 + \xi_2 \rangle = \langle \omega_2, \rho_1 + \rho_2 \rangle = \langle \omega_2, \rho_2 \rangle. \text{ So, } \xi_1 \in \mathcal{D}(x^*) \text{ and therefore } \mathcal{D}(Q) \subseteq \mathcal{D}(x^*) \oplus \mathcal{S}^\perp. \text{ Conversely, if } \xi = \xi_1 + \xi_2 \in \mathcal{D}(x^*) \oplus \mathcal{S}^\perp, \text{ where } \xi_1 \in \mathcal{D}(x^*) \text{ and } \xi_2 \in \mathcal{S}^\perp \text{ then for every } \omega = \omega_1 + \omega_2 \in \mathcal{D}(Q), \text{ where } \omega_1 \in \mathcal{S} \text{ and } \omega_2 \in \mathcal{D}(x) \text{ there exists } \rho = \xi_1 + x^*\xi_1 \text{ such that } \langle Q\omega, \xi \rangle = \langle \omega, \rho \rangle. \text{ In fact, } \langle Q\omega, \xi \rangle = \langle \omega_1 + x\omega_2, \xi_1 \rangle = \langle \omega_1, \xi_1 \rangle + \langle x\omega_2, \xi_1 \rangle = \langle \omega_1, \xi_1 \rangle + \langle \omega_2, x^*\xi_1 \rangle = \langle \omega_1, \xi_1 \rangle + \langle \omega_2, x^*\xi_1 \rangle = \langle \omega_1, \xi_1 \rangle + \langle \omega_1, \xi_1 \rangle + \langle \omega_2, \xi_1 \rangle = \langle \omega_1, \xi_1 \rangle + \langle \omega_2, \xi_1 \rangle = \langle \omega_1, \xi_1 \rangle + \langle \omega_2, \xi_1 \rangle = \langle \omega_1, \xi_1 \rangle + \langle \omega_2, \xi_1 \rangle = \langle \omega_1, \xi_1 \rangle + \langle \omega_2, \xi_1 \rangle = \langle \omega_1, \xi_1 \rangle + \langle \omega_2, \xi_1 \rangle = \langle \omega_1, \xi_1 \rangle + \langle \omega_2, \xi_1 \rangle = \langle \omega_1, \xi_1 \rangle + \langle \omega_2, \xi_1 \rangle = \langle \omega_1, \xi_1 \rangle + \langle \omega_2, \xi_1 \rangle = \langle \omega_1, \xi_1 \rangle + \langle \omega_2, \xi_1 \rangle = \langle \omega_1, \xi_1 \rangle + \langle \omega_2, \xi_1 \rangle = \langle \omega_1, \xi_1 \rangle + \langle \omega_2, \xi_1 \rangle = \langle \omega_1, \xi_1 \rangle + \langle \omega_2, \xi_1 \rangle = \langle \omega_1, \xi_1 \rangle + \langle \omega_2, \xi_1 \rangle = \langle \omega_1, \xi_1 \rangle + \langle \omega_2, \xi_1 \rangle = \langle \omega_1, \xi_1 \rangle + \langle \omega_2, \xi_1 \rangle = \langle \omega_1, \xi_1 \rangle + \langle \omega_2, \xi_1 \rangle = \langle \omega_1, \xi_1 \rangle + \langle \omega_2, \xi_1 \rangle = \langle \omega_1, \xi_1 \rangle + \langle \omega_2, \xi_1 \rangle = \langle \omega_1, \xi_1 \rangle + \langle \omega_2, \xi_1 \rangle = \langle \omega_1, \xi_1 \rangle + \langle \omega_2, \xi_1 \rangle = \langle \omega_1, \xi_1 \rangle + \langle \omega_2, \xi_1 \rangle = \langle \omega_1, \xi_1 \rangle + \langle \omega_2, \xi_1 \rangle = \langle \omega_1, \xi_1 \rangle + \langle \omega_2, \xi_1 \rangle = \langle \omega_1, \xi_1 \rangle + \langle \omega_2, \xi_1 \rangle = \langle \omega_1, \xi_1 \rangle + \langle \omega_2, \xi_1 \rangle = \langle \omega_1, \xi_1 \rangle + \langle \omega_2, \xi_1 \rangle = \langle \omega_1, \xi_1 \rangle + \langle \omega_2, \xi_1 \rangle = \langle \omega_1, \xi_1 \rangle + \langle \omega_2, \xi_1 \rangle = \langle \omega_1, \xi_1 \rangle + \langle \omega_2, \xi_1 \rangle = \langle \omega_1, \xi_1 \rangle + \langle \omega_2, \xi_1 \rangle + \langle \omega_2, \xi_1 \rangle = \langle \omega_1, \xi_1 \rangle + \langle \omega_2, \xi_1 \rangle + \langle \omega_1, \xi_1 \rangle + \langle \omega_2, \xi_1 \rangle + \langle \omega_1, \xi_1 \rangle + \langle \omega_2, \xi_1 \rangle + \langle \omega_1, \xi_1 \rangle + \langle \omega_1, \xi_1 \rangle + \langle \omega_2, \xi_1 \rangle + \langle \omega_1, \xi_1 \rangle + \langle \omega_1, \xi_1 \rangle + \langle \omega_2, \xi_1 \rangle + \langle \omega_1, \xi_1 \rangle + \langle \omega_1, \xi_1 \rangle + \langle \omega_1,$

Remark 2.8. It follows from Proposition 2.7 that $\mathcal{D}(Q) = \mathcal{S} \oplus \mathcal{D}(x)$ and, by [[4], Theorem 2.7], $\mathcal{D}(x) = P_{\mathcal{S}^{\perp}}(N(Q))$.

3 A-symmetric projections and quasi-compatibility

In this section we study unbounded projections which are symmetric for the semi-inner product defined by a bounded positive operator A by $\langle \xi, \eta \rangle_A = \langle A\xi, \eta \rangle$ for all $\xi, \eta \in \mathcal{H}$. Also, we characterize the existence of such projections with a prescribed range \mathcal{S} . Finally, we describe the set of symmetrizable projections for A with fixed range and domain. In the sequel we deal with closed projections.

3.1 A-symmetric projections

Remember that a densely defined operator T is symmetric if $T \subset T^*$. Furthermore, T is selfadjoint if $T = T^*$; this means that T is symmetric and $\mathcal{D}(T) = \mathcal{D}(T^*)$.

Definition 3.1. Let $A \in L(\mathcal{H})^+$ and Q a closed densely defined projection; we say that Q is A-symmetric if AQ is symmetric and it is A-selfadjoint if AQ is selfadjoint.

Since A is bounded then $\mathcal{D}(AQ) = \mathcal{D}(Q)$ and $(AQ)^* = Q^*A$. Therefore Q is A-symmetric if and only if $AQ\xi = Q^*A\xi$ for every $\xi \in \mathcal{D}(Q)$ and Q is A-selfadjoint if and only if $AQ = Q^*A$.

From now on A denotes an operator in $L(\mathcal{H})^+$ and \mathcal{S} a closed subspace of \mathcal{H} . In the next result we give conditions which guarantee that a densely defined projection is A-symmetric. For it, we consider the following matrix representation of A under the decomposition $\mathcal{H} = \mathcal{S} \oplus \mathcal{S}^{\perp}$:

$$A = \begin{pmatrix} a & b \\ b^* & c \end{pmatrix}, \tag{3}$$

where $a = P_{\mathcal{S}}AP_{\mathcal{S}}|_{\mathcal{S}}$, $b = P_{\mathcal{S}}AP_{\mathcal{S}^{\perp}}|_{\mathcal{S}^{\perp}}$ and $c = P_{\mathcal{S}^{\perp}}AP_{\mathcal{S}^{\perp}}|_{\mathcal{S}^{\perp}}$. Then $a \in L(\mathcal{S})^+$, $b \in L(\mathcal{S}^{\perp}, \mathcal{S})$ and $c \in L(\mathcal{S}^{\perp})^+$. Equivalence $1 \leftrightarrow 3$ of the following proposition is due to Krein [32].

Proposition 3.2. Let A with matrix representation (3) and Q a densely defined closed idempotent with R(Q) = S and matrix representation (2). The following assertions are equivalent:

- 1. Q is A-symmetric;
- 2. $ax \subset b$;
- 3. $N(Q) \subseteq (AS)^{\perp}$;

4. $\mathcal{D}(Q) = \mathcal{D}(Q^*AQ)$ and $Q^*AQ \leq A|_{\mathcal{D}(Q)}$.

Proof.

 $1 \leftrightarrow 2$. If Q is A-symmetric then $AQ = Q^*A|_{\mathcal{D}(Q)}$. By the matrix representation of A, Q and Q^* we get that $\begin{pmatrix} a & ax \\ b^* & b^*x \end{pmatrix} = \begin{pmatrix} a & b|_{\mathcal{D}(x)} \\ x^*a & x^*b|_{\mathcal{D}(x)} \end{pmatrix}$. So, $ax = b|_{\mathcal{D}(x)}$. Conversely, suppose that $ax \subset b$. Then $b^* \subset (ax)^* = x^*a$. So that, $b^* = x^*a \in L(\mathcal{S}, \mathcal{S}^{\perp})$ and $R(a) \subseteq \mathcal{D}(x^*)$. By the matrix representation of Q we get

$$AQ = \begin{pmatrix} a & ax \\ b^* & b^*x \end{pmatrix} = \begin{pmatrix} a & b|_{\mathcal{D}(x)} \\ b^* & b^*x \end{pmatrix} \text{ and}$$

$$Q^*A|_{\mathcal{D}(Q)} = Q^*A|_{\mathcal{S}\oplus\mathcal{D}(x)} = \begin{pmatrix} 1|_{\mathcal{D}(x^*)} & 0 \\ x^* & 0 \end{pmatrix} \begin{pmatrix} a & b|_{\mathcal{D}(x)} \\ b^* & c|_{\mathcal{D}(x)} \end{pmatrix} = \begin{pmatrix} a & b|_{\mathcal{D}(x)} \\ x^*a & x^*b|_{\mathcal{D}(x)} \end{pmatrix}.$$

Therefore, since $x^*a = b^*$, $x^*b|_{\mathcal{D}(x)} = x^*ax = b^*x$ then $AQ = Q^*A|_{\mathcal{D}(Q)}$. So, the assertion follows.

 $2 \leftrightarrow 3$. First observe that by the matrix representation of Q it holds $N(Q) = \{-x\xi + \xi : \xi \in \mathcal{D}(x)\}$. If $ax = b|_{\mathcal{D}(x)}$, $\xi \in \mathcal{D}(x)$ and $\eta \in \mathcal{S}$ then $\langle -x\xi + \xi, A\eta \rangle = \langle -x\xi + \xi, a\eta + b^*\eta \rangle = \langle -x\xi, a\eta \rangle + \langle \xi, b^*\eta \rangle = \langle -ax\xi, \eta \rangle + \langle b\xi, \eta \rangle = 0$. Then $N(Q) \subseteq (A\mathcal{S})^{\perp}$. Conversely, if $N(Q) \subseteq (A\mathcal{S})^{\perp}$ then given $\xi \in \mathcal{D}(x)$, for every $\eta \in \mathcal{S}$ it holds $0 = \langle -x\xi + \xi, A\eta \rangle = \langle -x\xi + \xi, a\eta + b^*\eta \rangle = \langle -ax\xi, \eta \rangle + \langle b\xi, \eta \rangle$. So that $\langle -ax\xi + b\xi, \eta \rangle = 0$ for every $\eta \in \mathcal{S}$ and then $ax = b|_{\mathcal{D}(x)}$.

 $1 \leftrightarrow 4$. If Q is A-symmetric then $AQ = Q^*A|_{\mathcal{D}(Q)}$. It is clear that $\mathcal{D}(Q^*AQ) \subseteq \mathcal{D}(Q)$. Now, if $\xi \in \mathcal{D}(Q)$ then $AQ\xi = AQ^2\xi = Q^*AQ\xi$. So that, $\xi \in \mathcal{D}(Q^*AQ)$. On the other hand, since $AQ = Q^*A|_{\mathcal{D}(Q)}$ and $A(\mathcal{D}(Q)) \subseteq \mathcal{D}(Q^*) = \mathcal{D}(I-Q^*)$ then $A(I-Q) = (I-Q^*)A|_{\mathcal{D}(Q)}$ and $A(I-Q) = (I-Q^*)A(I-Q)$. Then, as Q^*AQ and $(I-Q^*)A(I-Q)$ are positive we get that $A|_{\mathcal{D}(Q)} = Q^*AQ + (1-Q)^*A(1-Q) \geq Q^*AQ$. Conversely, since $\mathcal{D}(Q) = \mathcal{D}(Q^*AQ)$ then $R(A^{1/2}Q) \subseteq \mathcal{D}((A^{1/2}Q)^*)$ and so $Q^*AQ = (A^{1/2}Q)^*A^{1/2}Q$. Now, following the proof of Theorem 2 of Douglas [21], define $C: A^{1/2}(\mathcal{D}(Q)) \longrightarrow \mathcal{H}$ as $C(A^{1/2}\xi) = A^{1/2}Q\xi$ for every $\xi \in \mathcal{D}(Q)$. We claim that C is well defined. Indeed if $A^{1/2}\xi = A^{1/2}\eta$ for some $\xi, \eta \in \mathcal{D}(Q)$ then $\xi - \eta \in N(A) \cap \mathcal{D}(Q)$. Now, by the hypothesis we obtain that $\left\langle A^{1/2}Q(\xi - \eta), A^{1/2}Q(\xi - \eta) \right\rangle = \left\langle Q^*AQ(\xi - \eta), \xi - \eta \right\rangle \leq$ $\langle A(\xi - \eta), \xi - \eta \rangle = 0$. So, $||A^{1/2}Q(\xi - \eta)|| = 0$ and then $A^{1/2}Q\xi = A^{1/2}Q\eta$ which proves that C is well defined. On the other hand, $||CA^{1/2}\xi||^2 = ||A^{1/2}Q\xi||^2 = \langle Q^*AQ\xi, \xi \rangle \leq \langle A\xi, \xi \rangle = ||A^{1/2}\xi||^2$. Then, C is bounded on $A^{1/2}(\mathcal{D}(Q))$ (dense in $R(A^{1/2})$) so that we can extend C continuously to $\overline{R(A)}$ and if it is defined as 0 in N(A) it holds that $C \in L(\mathcal{H}), ||C|| \le 1$ and $CA^{1/2}|_{\mathcal{D}(Q)} = A^{1/2}Q$. In addition, if $\xi \in \mathcal{D}(Q)$ then $C^2(A^{1/2}\xi) = C(A^{1/2}Q\xi) = A^{1/2}Q\xi = C(A^{1/2}\xi)$. So $C^2 = C$ on $A^{1/2}(\mathcal{D}(Q))$ and therefore, since $A^{1/2}(\mathcal{D}(Q))$ is dense in $\overline{R(A^{1/2})}$ and $N(A) \subseteq N(C)$, $C^2 = C$. Hence, since C is an idempotent of $L(\mathcal{H})$ and $||C|| \leq 1$ then $C = C^*$. Moreover, it can be checked that $C = P_{\overline{A^{1/2}(R(Q))}}$. In consequence, $A^{1/2}P_{\overline{A^{1/2}(R(Q))}}^{\frac{1}{n}}A^{1/2}|_{\mathcal{D}(Q)} = AQ$ is symmetric and so Q is A-symmetric.

It is well known that every bounded projection Q is A-selfadjoint with respect to some $A \in L(\mathcal{H})^+$: take $A = Q^*Q + (I - Q^*)(I - Q)$. The next corollary extends this result to closed unbounded projections.

Corollary 3.3. Let Q be a densely defined closed projection. Then there exists $A \in L(\mathcal{H})^+$ such that Q is A-symmetric.

<u>Proof.</u> Let S = R(Q) and T = N(Q). Then $S \dotplus T = \mathcal{H}$ and, by Theorem 2.4, this is equivalent to $\overline{P_{T^{\perp}}(S)} = \mathcal{T}^{\perp}$. Now, take $A = P_{S^{\perp}} + P_{T^{\perp}} \in L(\mathcal{H})^{+}$. Then $\overline{AS} = \mathcal{T}^{\perp}$ and so, by Proposition 3.2, Q is A-symmetric.

The semi-inner product $\langle .,. \rangle_A$ defines a semi-norm $\|.\|_A : \mathcal{H} \longrightarrow \mathbb{R}^+$ by means of $\|\xi\|_A = \langle \xi, \xi \rangle_A^{1/2} = \|A^{1/2}\xi\|$. Then, it defines a seminorm on certain class of unbounded operators. More precisely, a densely defined operator T is said A-bounded if for every $\xi \in \mathcal{D}(T)$ there exists a constant c > 0 such that $\|T\xi\|_A \le c\|\xi\|_A$. In such case, $\|T\|_A = \sup\{\|T\xi\|_A : \xi \in \mathcal{D}(T) \text{ and } \|\xi\|_A = 1\}$ is a seminorm on the set of A-bounded operators.

Proposition 3.4. Let Q be an A-symmetric projection and $\mathcal{M} = \overline{R(A^{1/2}Q)}$. Then

- 1. $A^{1/2}Q$ admits an unique bounded extension to \mathcal{H} . In fact, $A^{1/2}Q = P_{\mathcal{M}}A^{1/2}$ in $\mathcal{D}(Q)$. Therefore, $AQ = A^{1/2}P_{\mathcal{M}}A^{1/2}$ in $\mathcal{D}(Q)$.
- 2. Q is A-bounded and $||Q||_A = 0$ or $||Q||_A = 1$.
- 3. $(AQ)^*$ is bounded and selfadjoint and it holds $(AQ)^* = \overline{AQ} = A^{1/2}P_{\mathcal{M}}A^{1/2}$. If, in addition, AQ is closed then Q is bounded and A-selfadjoint.

Proof.

- 1. It follows from the proof of equivalence $1 \leftrightarrow 4$ of Proposition 3.2.
- 2. Let Q be an A-symmetric projection. If $\xi \in \mathcal{D}(Q)$ then, by Proposition 3.2, $\|Q\xi\|_A^2 = \langle AQ\xi, Q\xi \rangle = \langle Q^*AQ\xi, \xi \rangle \leq \langle A\xi, \xi \rangle = \|\xi\|_A^2$. So, $\|Q\|_A \leq 1$. Now, if $R(Q) \subseteq N(A)$ then it is clear that $\|Q\|_A = 0$. On the contrary if $R(Q) \not\subseteq N(A)$ then there exists $0 \neq \eta \in R(Q) \setminus N(A)$ and it holds $\|Q\eta\|_A = \|\eta\|_A$. Therefore, $\|Q\|_A = 1$ and the assertion follows.
- 3. It follows from item 1 that AQ admits (a unique) bounded extension $S = A^{1/2}P_{\mathcal{M}}A^{1/2}$. Observe that $S = S^*$. Also, by the general fact that if $T_1 \subseteq T_2$ implies that $T_2^* \subseteq T_1^*$, it follows that $AQ \subseteq S = S^* \subseteq (AQ)^*$. Therefore $(AQ)^* = S$ because $S \in L(\mathcal{H})$, so that $(AQ)^*$ is bounded and selfadjoint. Moreover, by [[40], Theorem VIII.1], it holds that $S = (AQ)^{**} = \overline{AQ}$. Observe that, if AQ is closed then $AQ = \overline{AQ} = (AQ)^{**} = (AQ)^*$. Then Q is A-selfadjoint and AQ is bounded. Thus, $\mathcal{H} = \mathcal{D}(AQ) = \mathcal{D}(Q)$ and therefore $Q \in L(\mathcal{H})$.

Corollary 3.5. Let $A \in L(\mathcal{H})^+$ injective, Q an A-symmetric projection and $\mathcal{M} = \overline{R(A^{1/2}Q)}$. Then $Q = A^{-1/2}P_{\mathcal{M}}A^{1/2}$ on $\mathcal{D}(Q)$.

Proof. It follows from item 1 of Proposition 3.4.

Corollary 3.6. If Q is an A-selfadjoint projection then Q is bounded.

Proof. If Q is A-seladjoint then AQ is closed. Then apply item 3 of Proposition 3.4. \Box

3.2 Quasi-compatibility

Given $A \in L(\mathcal{H})^+$ and a closed subspace $\mathcal{S} \subseteq \mathcal{H}$, the theory of compatibility studies the existence of A-selfadjoint bounded projections with range \mathcal{S} . More precisely, the pair (A, \mathcal{S}) is called *compatible* if there exists a projection $Q \in L(\mathcal{H})$ with range \mathcal{S} such that Q is A-selfadjoint (i.e. $AQ = Q^*A$). This fact is equivalent to $\mathcal{S} + (A\mathcal{S})^{\perp} = \mathcal{H}$. See the references [17, 16, 12, 13] for several characterizations, examples and applications of this concept. In the next result we characterize the compatibility of a pair (A, \mathcal{S}) in terms of unbounded projections.

Theorem 3.7. If there exists an A-selfadjoint (densely defined closed) projection onto S then (A, S) is compatible.

Proof. The proof follows applying Corollary 3.6.

Observe that the converse of Theorem 3.7 is immediate. Taking into account the above theorem, in what follows we study a weaker notion than compatibility, namely, the existence of an A-symmetric projection onto S for given $A \in L(\mathcal{H})^+$ and $S \subseteq \mathcal{H}$ a closed subspace.

Definition 3.8. Let $A \in L(\mathcal{H})^+$ and $S \subseteq \mathcal{H}$ a closed subspace of \mathcal{H} . We say that the pair (A, S) is quasi-compatible if there exists an A-symmetric projection Q with R(Q) = S.

Proposition 3.9. The pair (A, S) is quasi-compatible if and only if $S + (AS)^{\perp}$ is dense in H.

Proof. If (A, S) is quasi-compatible then there exists an A-symmetric projection with range S and, by Proposition 3.2, $\mathcal{D}(Q) = S + N(Q) \subseteq S + (AS)^{\perp}$. Since Q is densely defined then $S + (AS)^{\perp}$ is dense in \mathcal{H} . Conversely, let $\mathcal{N} = S \cap (AS)^{\perp}$. Note that $S + (AS)^{\perp} = S + (AS)^{\perp} \oplus \mathcal{N}$ and define $Q = P_{S//(AS)^{\perp} \oplus \mathcal{N}}$. Then Q is a closed densely defined projection and, by Proposition 3.2, Q is A-symmetric. So that (A, S) is quasi-compatible.

In the sequel, given $A \in L(\mathcal{H})^+$ and a closed subspace \mathcal{S} , we denote

$$S_A := S + (AS)^{\perp}$$
 and $\mathcal{N} := S \cap (AS)^{\perp}$.

Note that $\mathcal{N} = \mathcal{S} \cap N(A)$.

Lemma 3.10. The following assertions hold:

1.
$$S_A = S + (AS)^{\perp} \oplus \mathcal{N} = S \oplus P_{S^{\perp}}((AS)^{\perp}) = (AS)^{\perp} \oplus P_{\overline{AS}}(S)$$
.

2.
$$P_{\overline{AS}}(S) = S_A \cap \overline{AS}$$
.

Proof.

1. The first equality is an elementary result of linear algebra. In order to see that $S_A = S \oplus R(P_{S^{\perp}}P_{(AS)^{\perp}})$, take $\xi = \eta + \omega \in S_A$, where $\eta \in S$ and $\omega \in (AS)^{\perp}$. Since $\omega = P_S\omega + P_{S^{\perp}}\omega$ then $\xi = \eta + P_S\omega + P_{S^{\perp}}\omega \in S \oplus R(P_{S^{\perp}}P_{(AS)^{\perp}})$. Conversely, let $\xi = \eta + \omega \in S \oplus R(P_{S^{\perp}}P_{(AS)^{\perp}})$, where $\eta \in S$ and $\omega \in R(P_{S^{\perp}}P_{(AS)^{\perp}})$. Then, $\omega = P_{S^{\perp}}\mu = (I - P_S)\mu$ for some $\mu \in (AS)^{\perp}$ and so $\xi = \eta - P_S\mu + \mu \in S + (AS)^{\perp} = S_A$. The proof of the third equality is similar.

2. By item $1 P_{\overline{AS}}(S) \subseteq S_A$. So, $P_{\overline{AS}}(S) \subseteq S_A \cap \overline{AS}$. Conversely, let $\xi = \eta + \mu \in S_A \cap \overline{AS}$ where $\eta \in (AS)^{\perp}$ and $\mu \in P_{\overline{AS}}(S)$. Then $\xi - \mu = \eta \in (AS)^{\perp} \cap \overline{AS} = \{0\}$. So $\xi = \mu \in P_{\overline{AS}}(S)$.

The next elementary lemma will be useful to provide some examples of quasi-compatible pairs.

Lemma 3.11. It holds $S^{\perp} \cap \overline{AS} \cap R(A) = \{0\}.$

Proof. Let $\xi \in \mathcal{S}^{\perp} \cap \overline{AS} \cap R(A)$. Then $\xi = A\eta$ for some $\eta \in \mathcal{H}$ and there exists a sequence $\{\mu_n\}_{n\in\mathbb{N}} \subseteq \mathcal{S}$ such that $A\mu_n \xrightarrow[n\to\infty]{} \xi = A\eta$. Furthermore, $0 = \langle \mu_n, \xi \rangle = \langle \mu_n, A\eta \rangle = \langle A\mu_n, \eta \rangle \xrightarrow[n\to\infty]{} \langle A\eta, \eta \rangle$. Hence, $\|A^{1/2}\eta\| = 0$. Therefore, $\eta \in N(A)$ and so $\xi = A\eta = 0$.

Corollary 3.12. If $A \in L(\mathcal{H})^+$ has closed range and S is a closed subspace then $S^{\perp} \cap \overline{AS} = \{0\}$. Therefore, for every $A \in L(\mathcal{H})^+$ with closed range the pair (A, S) is quasi-compatible. Furthermore, (A, S) is compatible if and only if $c(S, (AS)^{\perp}) < 1$.

Proof. Since $\overline{R(A)} = R(A)$ then $\overline{AS} \subseteq R(A)$. Therefore, $S^{\perp} \cap \overline{AS} = S^{\perp} \cap \overline{AS} \cap R(A) = \{0\}$ and so (A, S) is quasi-compatible. For the last assertion, note that since $\overline{S} + (AS)^{\perp} = \mathcal{H}$ then (A, S) is compatible if and only if $S + (AS)^{\perp}$ is closed if and only if $C(S, (AS)^{\perp}) < 1$.

Example 3.13. Let P_1 and P_2 be orthogonal projections. Then:

- 1. $(P_1, R(P_2))$ is compatible if and only if $R(P_1P_2)$ is closed (see [[17], Theorem 7.1]).
- 2. $(P_1, R(P_2))$ is quasi-compatible non compatible if and only if $R(P_1P_2)$ is non closed. In fact, since P_1 has closed range then $(P_1, R(P_2))$ is quasi-compatible. Then the assertion follows by item 1.

Corollary 3.12 shows that there are many strictly quasi-compatible pairs. In the following example we exhibit a pair (A, \mathcal{S}) which is not quasi-compatible.

Example 3.14. Given $A \in L(\mathcal{H})^+$ with non closed range, choose $\xi \in \overline{R(A)} \setminus R(A)$ and define a closed subspace S by $S^{\perp} = span\{\xi\}$. Observe that $(AS)^{\perp} = A^{-1}(S^{\perp}) = A^{-1}(span\{\xi\}) = A^{-1}(span\{\xi\} \cap R(A)) = A^{-1}(\{0\}) = N(A)$. Then $\overline{AS} = \overline{R(A)}$ and by density $S^{\perp} \cap \overline{AS} = S^{\perp} \cap \overline{R(A)} = S^{\perp} \neq \{0\}$. Therefore, by Theorem 3.16, the pair (A, S) is not quasi-compatible.

The next result characterizes the quasi-compatibility in terms of a bounded operator. This proposition is related with a result of Crimmins (see Radjavi and Williams [39]) which proves that a bounded linear operator T can be factorized as the product of two orthogonal projections if and only if $T^2 = TT^*T$. The proof of the following proposition follows from [[14], Theorem 6.2].

Proposition 3.15. The pair (A, S) is quasi-compatible if and only if there exists $T \in L(\mathcal{H})$ such that $TT^*T = T^2$, $\overline{R(T)} = \overline{AS}$ and $N(T) = (S \ominus \mathcal{N})^{\perp}$.

Items 3 and 4 of the following result are a particular case of [[35], Lemma 2.1]. Here we include them as a manifestation of quasi-compatibility.

Theorem 3.16. The following assertions are equivalent:

- 1. The pair (A, S) is quasi-compatible;
- 2. There exists a closed densely defined projection Q with R(Q) = S and $N(Q) \subseteq (AS)^{\perp}$;
- 3. $\mathcal{S}^{\perp} \cap \overline{AS} = \{0\};$
- 4. $\overline{P_{\overline{AS}}(S)} = \overline{AS};$
- 5. $\overline{\mathcal{S}_A \cap \overline{AS}} = \overline{AS}$;
- 6. $I P_{(S \cap N)^{\perp}} P_{\overline{AS}}$ is injective.

Proof.

- $1 \leftrightarrow 2$. Follows from Proposition 3.2.
- $1 \leftrightarrow 3$. (A, \mathcal{S}) is quasi-compatible if and only if $\mathcal{H} = \overline{\mathcal{S} + (A\mathcal{S})^{\perp}}$ if and only if $\{0\} = \mathcal{S}^{\perp} \cap \overline{A\mathcal{S}}$.
- $1 \leftrightarrow 4$. Using Proposition 3.9 and Lema 3.10, (A, \mathcal{S}) is quasi-compatible if and only if $\overline{\mathcal{S}_A} = \mathcal{H}$ if and only if $\overline{P_{AS}(\mathcal{S})} = \overline{AS}$.
- $1 \leftrightarrow 5$. By Proposition 3.9 and Lemma 3.10, (A, \mathcal{S}) is quasi-compatible if and only if $\overline{P_{AS}(\mathcal{S})} = \overline{AS}$ if and only if $\overline{S_A \cap \overline{AS}} = \overline{AS}$.
- $1 \leftrightarrow 6. \text{ Observe that } N(I P_{(\mathcal{S} \ominus \mathcal{N})^{\perp}} P_{\overline{AS}}) = (\mathcal{S} \ominus \mathcal{N})^{\perp} \cap \overline{AS}. \text{ In fact, it is clear that } (\mathcal{S} \ominus \mathcal{N})^{\perp} \cap \overline{AS} \subseteq N(I P_{(\mathcal{S} \ominus \mathcal{N})^{\perp}} P_{\overline{AS}}). \text{ Conversely, if } \xi \in N(I P_{(\mathcal{S} \ominus \mathcal{N})^{\perp}} P_{\overline{AS}}) \text{ then } \xi = P_{(\mathcal{S} \ominus \mathcal{N})^{\perp}} P_{\overline{AS}} \xi.$ Therefore $\xi \in (\mathcal{S} \ominus \mathcal{N})^{\perp}$ and $P_{(\mathcal{S} \ominus \mathcal{N})^{\perp}} \xi = P_{(\mathcal{S} \ominus \mathcal{N})^{\perp}} P_{\overline{AS}} \xi$, or, equivalently, $P_{(\mathcal{S} \ominus \mathcal{N})^{\perp}} P_{(A\mathcal{S})^{\perp}} \xi = 0$. So, $P_{(A\mathcal{S})^{\perp}} \xi \in (A\mathcal{S})^{\perp} \cap (\mathcal{S} \ominus \mathcal{N}) = \{0\}$ and then $\xi \in \overline{AS}$ because $\xi = P_{\overline{AS}} \xi + P_{(A\mathcal{S})^{\perp}} \xi$. Then $\xi \in (\mathcal{S} \ominus \mathcal{N})^{\perp} \cap \overline{AS}$. Hence $N(I P_{(\mathcal{S} \ominus \mathcal{N})^{\perp}} P_{\overline{AS}}) \subseteq (\mathcal{S} \ominus \mathcal{N})^{\perp} \cap \overline{AS}$. Now we get that (A, \mathcal{S}) is quasi-compatible if and only if $\mathcal{H} = \overline{\mathcal{S} \ominus \mathcal{N} + (A\mathcal{S})^{\perp}}$ if and only if $(\mathcal{S} \ominus \mathcal{N})^{\perp} \cap \overline{AS} = \{0\}$ if and only if $I P_{(\mathcal{S} \ominus \mathcal{N})^{\perp}} P_{\overline{AS}}$ is injective. \square

Observe that item 4 of the above proposition means that for every $\eta \in \overline{AS}$ there exists a sequence $\{P_{\overline{AS}}\xi_n\}_{n\in\mathbb{N}}$, $\xi_n\in\mathcal{S}$, such that $\lim_{n\to\infty}P_{\overline{AS}}\xi_n=\eta$. If, in addition, the sequence $\{P_{\overline{AS}}\xi_n\}_{n\in\mathbb{N}}$ is bounded then it is equivalent to the compatibility of the pair (A,\mathcal{S}) . In fact, by the hypothesis it holds that $\overline{P_{\overline{AS}}\mathcal{S}}=\overline{AS}$. Now, as $\{P_{\overline{AS}}\xi_n\}_{n\in\mathbb{N}}$ is bounded then, by [[35], Proposition 2.2] it holds that $\overline{AS}\subseteq P_{\overline{AS}}\mathcal{S}$ and so, $P_{\overline{AS}}\mathcal{S}=\overline{AS}$. This last assertion means that $\mathcal{S}+(A\mathcal{S})^{\perp}=\mathcal{H}$, or, which is the same, the pair (A,\mathcal{S}) is compatible. The converse is immediate. In order to get other equivalent conditions to the compatibility of (A,\mathcal{S}) , all conditions of Proposition 3.16 can be adapted as follows:

- 2) there exists a bounded projection Q with $R(Q) = \mathcal{S}$ and $N(Q) \subseteq (A\mathcal{S})^{\perp}$;
- 3) $S^{\perp} \cap \overline{AS} = \{0\}$ and $S + (AS)^{\perp}$ is closed;
- 4) $P_{\overline{AS}}(S) = \overline{AS};$
- 5) $S_A \cap \overline{AS} = \overline{AS}$;
- 6) $I P_{(S \ominus \mathcal{N})^{\perp}} P_{\overline{AS}}$ is invertible.

Denote

$$T_{A,\mathcal{S}} := P_{\mathcal{S} \ominus \mathcal{N}} + P_{(A\mathcal{S})^{\perp}} \text{ and } R_{A,\mathcal{S}} := P_{\mathcal{S} \ominus \mathcal{N}} - P_{(A\mathcal{S})^{\perp}}.$$

The next theorem offers a more precise description of the type of compatibility (or non compatibility) of a pair (A, S) in terms of $||T_{A,S} - I||$ and $||P_{S^{\perp}}P_{\overline{AS}}||$:

Theorem 3.17.

- 1. (A, S) is quasi-compatible $\Leftrightarrow T_{A,S}$ is injective $\Leftrightarrow R_{A,S}$ is injective.
- 2. (A, S) is compatible $\Leftrightarrow T_{A,S}$ is invertible $\Leftrightarrow R_{A,S}$ is invertible $\Leftrightarrow \|T_{A,S} I\| < 1 \Leftrightarrow \|P_{S^{\perp}} P_{\overline{AS}}\| < 1$.
- 3. (A, \mathcal{S}) is not quasi-compatible \Leftrightarrow there exists $\xi \neq 0$ such that $\|(T_{A,\mathcal{S}} I)\xi\| = \|\xi\| \Leftrightarrow$ there exists $\xi \neq 0$ such that $\|P_{\mathcal{S}^{\perp}}P_{\overline{AS}}\xi\| = \|\xi\|$.
- 4. (A, \mathcal{S}) is quasi-compatible non compatible $\Leftrightarrow ||T_{A,\mathcal{S}} I|| = 1$ and for every $\xi \neq 0$, $||(T_{A,\mathcal{S}} I)\xi|| < ||\xi|| \Leftrightarrow ||P_{\mathcal{S}^{\perp}}P_{\overline{A}\overline{\mathcal{S}}}|| = 1$ and for every $\xi \neq 0$, $||P_{\mathcal{S}^{\perp}}P_{\overline{A}\overline{\mathcal{S}}}\xi|| < ||\xi||$.

The last result of this subsection relates properties of S + T with the existence of some type of compatibility. Item 3 has appeared in [[13], Theorem 3.10].

Proposition 3.18. The following assertions hold:

- 1. $\overline{S+T}=\mathcal{H}$ if and only in there exists $A\in L(\mathcal{H})^+$ such that $\overline{AS}=\mathcal{T}^\perp$ and the pair (A,S) is quasi-compatible.
- 2. S + T is dense non closed in H if and only if there exists $A \in L(H)^+$ with non closed range such that $\overline{AS} = T^{\perp}$ and the pair (A, S) is quasi-compatible but non compatible.
- 3. $S + T = \mathcal{H}$ if and only if there exists $A \in L(\mathcal{H})^+$ with closed range such that $\overline{AS} = T^{\perp}$ and (A, S) is compatible.

Proof.

- 1. Suppose $\overline{\mathcal{S}+T}=\mathcal{H}$ and take $A=P_{\mathcal{S}^{\perp}}+P_{\mathcal{T}^{\perp}}$. It is clear that $A\in L(\mathcal{H})^+$. Furthermore, $\overline{A\mathcal{S}}=\overline{P_{\mathcal{T}^{\perp}}(\mathcal{S})}=\mathcal{T}^{\perp}$, where the last equality holds by Theorem 2.4. Therefore (A,\mathcal{S}) is quasicompatible because $\overline{\mathcal{S}+(A\mathcal{S})^{\perp}}=\overline{\mathcal{S}+\mathcal{T}}=\mathcal{H}$. The converse is immediate.
- 2. Suppose that S + T is a dense non closed subspace and take $A = P_{S^{\perp}} + P_{T^{\perp}} \in L(\mathcal{H})^+$. By Theorem 2.4 the operator A has non closed range. As in the above item, $\overline{AS} = T^{\perp}$. Now, since

 $\overline{S + (AS)^{\perp}} = \overline{S + T}$ then (A, S) is quasi-compatible but it is non compatible because $S + (AS)^{\perp}$ is non closed. The converse is immediate.

3. The proof of item 3 is similar.

Remark 3.19. If $\overline{S+T}=\mathcal{H}$ then $A=P_{\mathcal{T}^{\perp}}\in L(\mathcal{H})^+$ satisfies that $\overline{AS}=\mathcal{T}^{\perp}$ and (A,S) is quasi-compatible. However, the quasi-compatibility is straightforward because A has closed range.

3.3 The set $\mathcal{P}(A,\mathcal{S})$

If Q is an A-symmetric projection onto S then, by Proposition 3.2, $\mathcal{D}(Q) \subseteq S_A$ and this inclusion may be strict as shows the following example: consider $A \in L(\mathcal{H})^+$ such that $dim(N(A)) = \infty$ and $S \subseteq N(A)$ a closed subspace of \mathcal{H} such that $dim(S) = dim(S^{\perp}) = \infty$. Observe that any closed projection Q such that $R(Q) \subseteq N(A)$ is trivially A-symmetric because AQ = 0 and, since $(A(R(Q)))^{\perp} = \mathcal{H}$, it follows that $S_A = \mathcal{H}$. In this particular case it is possible to construct a closed subspace \mathcal{M} such that $S + \mathcal{M}$ is dense in \mathcal{H} and $c(S, \mathcal{M}) = 1$ (see [[26], pages 28-29]) so that $S + \mathcal{M}$ is not closed. The projection $Q = P_{S//\mathcal{M}}$ is an unbounded closed A-symmetric projection onto S such that $\mathcal{D}(Q) = S + \mathcal{M} \subseteq \mathcal{H} = S_A$.

If the pair (A, S) is quasi-compatible then S_A is dense in \mathcal{H} and $S_A = S \oplus (AS)^{\perp} \ominus \mathcal{N} = S \oplus \mathcal{N} \oplus (AS)^{\perp}$. Consider the A-symmetric projections:

$$P_{A,S} = P_{S//(AS)^{\perp} \ominus \mathcal{N}}$$
 and $P_{A,S \ominus \mathcal{N}} = P_{S \ominus \mathcal{N}//(AS)^{\perp}}$,

and denote by $\mathcal{P}(A,\mathcal{S})$ the set of all A-symmetric idempotents with domain \mathcal{S}_A and range \mathcal{S} .

The notations $P_{A,S}$, $P_{A,S \ominus N}$ and $\mathcal{P}(A,S)$ have been used in [17, 16] in the context of bounded projections. Observe that if (A,S) is quasi-compatible then $\mathcal{P}(A,S)$ is not empty because $P_{A,S} \in \mathcal{P}(A,S)$. Moreover, if $S \cap N(A) = \{0\}$ then $\mathcal{P}(A,S) = \{P_{A,S}\}$. The next theorem is the "unbounded version" of [[17], Theorem 3.5].

Theorem 3.20. If the pair (A, S) is quasi-compatible then

$$\mathcal{P}(A,\mathcal{S}) = P_{A,\mathcal{S}} + \{W \in L(\mathcal{H}) : R(W) \subseteq \mathcal{N} \text{ and } \mathcal{S} \subseteq N(W)\}.$$

Proof. Let $Q = P_{A,S} + W$, where $W \in L(\mathcal{H})$ is such that $R(W) \subseteq \mathcal{N}$ and $S \subseteq N(W)$. Observe that $P_{A,S}W = W$, $WP_{A,S} = 0$ and $W^2 = 0$. Then Q is an idempotent with domain S_A . Furthermore R(Q) = S. In fact, it is clear that $R(Q) \subseteq S$ and if $\xi \in S$ then $Q\xi = (P_{A,S} + W)\xi = P_{A,S}\xi = \xi$. So, $S \subseteq R(Q)$. Also, $N(Q) \subseteq (AS)^{\perp}$. Indeed, let $\xi \in N(Q)$. Then $P_{A,S}\xi = -W\xi$ and so $\xi = (I - P_{A,S})\xi + P_{A,S}\xi \in (AS)^{\perp}$. In order to see that $Q \in \mathcal{P}(A,S)$ it only remains to prove that Q is a closed operator but this is a consequence of the fact that Q is the sum of a closed operator and a bounded operator. Conversely, let $Q \in \mathcal{P}(A,S)$ and define $W = Q - P_{A,S}$. It clear that $\mathcal{D}(W) = S_A$ and $S \subseteq N(W)$. Now, $R(W) \subseteq S$ and since $W = (I - P_{A,S}) - (I - Q)$ then $R(W) \subseteq (AS)^{\perp}$. So, $R(W) \subseteq \mathcal{N}$. On the other hand, since $W|_{(AS)^{\perp} \ominus \mathcal{N}} = Q|_{(AS)^{\perp} \ominus \mathcal{N}}$ and Q is closed then $W|_{(AS)^{\perp} \ominus \mathcal{N}}$ is closed and then bounded. Now, as $W|_{S} = 0$ then W is bounded on S_A which is a dense subspace of \mathcal{H} . Therefore, W has a unique bounded linear extension \tilde{W} to \mathcal{H} and it satisfies that $Q = P_{A,S} + \tilde{W}$, $S \subseteq N(\tilde{W})$ and $R(\tilde{W}) \subseteq \mathcal{N}$.

Proposition 3.21. If the pair (A, S) is quasi-compatible then

- 1. $P_{A,S} = P_{A,S \ominus N} + P_{N}$.
- 2. If $\xi \in \mathcal{S}_A$ then $\|(I P_{A,\mathcal{S}})\xi\| = \min\{\|(I Q)\xi\| : Q \in \mathcal{P}(A,\mathcal{S})\}$. Moreover, $(I P_{A,\mathcal{S}})\xi$ is the unique vector with minimal norm.

Proof. We omit the proof because it is similar to that one of the bounded case (see [[17], Theorem 3.6]).

4 Formulas for $P_{A,S}$

For the sake of simplicity, along this section, we will consider $A \in L(\mathcal{H})^+$ injective. In what follows, we describe several formulae for the element $P_{A,\mathcal{S}}$ for a compatible pair (A,\mathcal{S}) . We begin with a matrix representation of $P_{A,\mathcal{S}}$.

Proposition 4.1. Let $A \in L(\mathcal{H})^+$ an injective operator such that (A, \mathcal{S}) is a quasi-compatible pair. Then

$$P_{A,\mathcal{S}} = \begin{pmatrix} 1 & -P_{\mathcal{S}}(P_{\mathcal{S}^{\perp}}P_{(A\mathcal{S})^{\perp}}|_{(A\mathcal{S})^{\perp}})^{-1} \\ 0 & 0 \end{pmatrix} \quad on \quad \mathcal{S} \oplus R(P_{\mathcal{S}^{\perp}}P_{(A\mathcal{S})^{\perp}}).$$

Furthermore, if we consider the matrix representation (3) of A then $x_0 = -P_{\mathcal{S}}(P_{\mathcal{S}^{\perp}}P_{(A\mathcal{S})^{\perp}}|_{(A\mathcal{S})^{\perp}})^{-1}$ is the unique solution of the equation $ax = b|_{R(P_{\mathcal{S}^{\perp}}P_{(A\mathcal{S})^{\perp}})}$.

Proof. Since A is an injective operator then $P_{A,S} = P_{S//(AS)^{\perp}}$ and $P_{S^{\perp}}P_{(AS)^{\perp}}|_{(AS)^{\perp}}: (AS)^{\perp} \longrightarrow R(P_{S^{\perp}}P_{(AS)^{\perp}})$ is invertible. Therefore the matrix representation of $P_{A,S}$ follows from [[4], Theorem 2.6]. The last part of this result follows from Proposition 3.2.

In order to present different formulas to the element $P_{A,S}$ recall that if $T: \mathcal{D}(T) \subseteq \mathcal{H} \longrightarrow \mathcal{H}$ is a closed densely defined operator, the *Moore-Penrose inverse of* T is the unique linear operator T^{\dagger} with domain $\mathcal{D}(T^{\dagger}) = R(T) \oplus R(T)^{\perp}$ which satisfies the following properties:

- 1. $TT^{\dagger} = P_{\overline{R(T)}}|_{\mathcal{D}(T^{\dagger})};$
- 2. $T^{\dagger}T = P_{N(T)^{\perp}}|_{\mathcal{D}(T)};$
- 3. $N(T^{\dagger}) = R(T)^{\perp}$.

It holds that the operator T^{\dagger} is bounded if and only if R(T) is closed (see [7] for the proof of this assertion).

Proposition 4.2. Let $A \in (\mathcal{H})^+$ an injective operator such that (A, \mathcal{S}) is a quasi-compatible pair. If $P = P_{\mathcal{S}}$ then

- 1. $P_{A,S} = A^{-1/2} P_{\overline{A^{1/2}S}} A^{1/2} |_{S_A};$
- 2. $P_{A,S} = (P_{\overline{AS}}P)^{\dagger};$
- 3. $P_{A,S} = P(P + P_{(AS)^{\perp}})^{-1/2}(P + P_{(AS)^{\perp}})^{-1/2}$.

Proof. Remember that if (A, S) is quasi-compatible then the subspace $S_A = S + (AS)^{\perp}$ is dense in \mathcal{H} .

- 1. Since (A, \mathcal{S}) is quasi-compatible and A is injective then the formula follows from Corollary 3.5.
- 2. Since A is injective then $P_{A,S} = P_{S//(AS)^{\perp}}$. On the other hand, as $P_{A,S}$ is a closed densely defined operator then $R(P_{A,S})$ is closed and $P_{A,S}^{\dagger} \in L(\mathcal{H})$. Now, $P_{A,S}^{\dagger} = P_{A,S}^{\dagger} P_{A,S} P_{A,S}^{\dagger} = (P_{A,S}^{\dagger} P_{A,S})(P_{A,S}P_{A,S}^{\dagger}) = P_{\overline{AS}}|_{S_A}P_S = P_{\overline{AS}}P_S$. Then $P_{A,S} = (P_{\overline{AS}}P_S)^{\dagger}$ as we claimed.

3. This formula is due to Ando [[4], Theorem 2.2].

Remark 4.3. The formulas for $P_{A,S}$ given in the above proposition are still valid if $A \in L(\mathcal{H})^+$ is not injective but $S \cap N(A) = \{0\}$. In this case, in the formula of item 1 the operator $A^{-1/2}$ must be replaced by $(A^{1/2})^{\dagger}$.

We finish this section with a characterizaction of compatibility in terms of a closable idempotent. Before that we present the following lemma.

Lemma 4.4. Let $E_0: R(A^{1/2}) \longrightarrow \mathcal{H}$ defined by $E_0 = A^{1/2} P_{\overline{A^{1/2}S}} A^{-1/2}$. Then, E_0 is an idempotent with $R(E_0) = A^{1/2} (\overline{A^{1/2}S})$ and $N(E_0) = S^{\perp} \cap R(A^{1/2})$.

Proof. It is easy to check that $E_0^2 = E_0$. Furthermore, $R(E_0) = A^{1/2}P_{\overline{A^{1/2}S}}A^{-1/2}(R(A^{1/2})) = R(A^{1/2}P_{\overline{A^{1/2}S}}) = A^{1/2}(\overline{A^{1/2}S})$. Now, observe that $A^{1/2}((A^{1/2}S)^{\perp}) = A^{1/2}(A^{-1/2}S^{\perp}) = S^{\perp} \cap R(A^{1/2})$. If $\xi \in N(E_0) \subseteq R(A^{1/2})$ then there exists a unique $\eta \in \mathcal{H}$ such that $\xi = A^{1/2}\eta$ and it holds that $P_{\overline{A^{1/2}S}}\eta = 0$. So that, $\xi \in A^{1/2}((A^{1/2}S)^{\perp}) = S^{\perp} \cap R(A^{1/2})$. Conversely, if $\xi \in S^{\perp} \cap R(A^{1/2}) = A^{1/2}((A^{1/2}S)^{\perp})$ then there exists a unique $\eta \in (A^{1/2}S)^{\perp}$ such that $\xi = A^{1/2}\eta$. Then $E_0\xi = A^{1/2}P_{\overline{A^{1/2}S}}\eta = 0$. Therefore, $N(E_0) = S^{\perp} \cap R(A^{1/2})$. □

Theorem 4.5. The pair (A, S) is compatible if and only if E_0 is closable, $\overline{E_0}$ is bounded and $S^{\perp} = \overline{S^{\perp} \cap R(A^{1/2})}$.

Proof. Since A is injective and (A, \mathcal{S}) is compatible then $P_{A,\mathcal{S}} = A^{-1/2}P_{\overline{AS}}A^{1/2}$ is bounded. Observe that $P_{A,\mathcal{S}}^* \supseteq (P_{\overline{A^{1/2}}\mathcal{S}}A^{1/2})^*(A^{-1/2}) \supseteq A^{1/2}P_{\overline{A^{1/2}}\mathcal{S}}A^{-1/2} = E_0$. Then, E_0 is closable and bounded. Therefore, $\overline{E_0}$ is a closed densely defined projection and $\overline{E_0} = P_{\overline{A^{1/2}}(\overline{A^{1/2}\mathcal{S}})//\overline{\mathcal{S}^{\perp} \cap R(A^{1/2})}$. Now, as $A^{1/2}(A^{1/2}\mathcal{S}) \subseteq A^{1/2}(\overline{A^{1/2}\mathcal{S}}) \subseteq \overline{A\mathcal{S}}$ then $\overline{A^{1/2}}(\overline{A^{1/2}\mathcal{S}}) = \overline{A\mathcal{S}}$. In consequence, $\overline{A\mathcal{S}} \dotplus \overline{\mathcal{S}^{\perp} \cap R(A^{1/2})}$ is dense in \mathcal{H} . Let see that $\overline{A\mathcal{S}} \dotplus \overline{\mathcal{S}^{\perp} \cap R(A^{1/2})}$ is also closed. By the hypothesis we get that $\overline{A\mathcal{S}} \dotplus \mathcal{S}^{\perp} = \mathcal{H}$. Thus $c_0(\overline{A\mathcal{S}}, \overline{\mathcal{S}^{\perp} \cap R(A^{1/2})}) \subseteq c_0(\overline{A\mathcal{S}}, \mathcal{S}^{\perp}) < 1$. Hence $\overline{A\mathcal{S}} \dotplus \overline{\mathcal{S}^{\perp} \cap R(A^{1/2})} = \overline{A\mathcal{S}} \dotplus \overline{\mathcal{S}^{\perp}} = \mathcal{H}$. So that $\overline{E_0} \in L(\mathcal{H})$ and $\mathcal{S}^{\perp} = \overline{\mathcal{S}^{\perp} \cap R(A^{1/2})}$. Conversely, if E_0 is closable and $\overline{E_0}$ is bounded then $\overline{E_0} \in L(\mathcal{H})$ and $\overline{E_0} = P_{\overline{A\mathcal{S}}//\mathcal{S}^{\perp}}$. Then $\overline{A\mathcal{S}} \dotplus \mathcal{S}^{\perp} = \mathcal{H}$, or which is the same, $\mathcal{S} \dotplus (A\mathcal{S})^{\perp} = \mathcal{H}$. So that, (A, \mathcal{S}) is compatible.

5 Applications

5.1 An interpolation problem

Consider the following two decompositions of the Hilbert space $L^2(\mathbb{T})$:

$$L^{2}(\mathbb{T}) = H^{2} \oplus \overline{H}^{2} = L^{2}(K) \oplus L^{2}(\mathbb{T} \setminus K), \tag{4}$$

where K is a compact subset of \mathbb{T} such that K and $\mathbb{T} \setminus K$ have positive measure and $L^2(K)$ denotes the subspace of functions of $L^2(\mathbb{T})$ which vanish almost everywhere on $\mathbb{T} \setminus K$. Furthermore, H^2 denotes the Hardy space which is the subspace of $L^2(\mathbb{T})$ whose Fourier coefficients of strictly negative indices vanish and its orthogonal complement \overline{H}^2 is the subspace of functions of $L^2(\mathbb{T})$ whose Fourier coefficient of non-negative indices vanish. This and other examples are the starting point of [35] for the study of interpolation and constrained approximation problems in Hilbert function spaces. See [35] and references therein for applications of (4) and other decompositions. The problems studied in [35] have the following general framework: $\mathcal{H} = \mathcal{S} \oplus \mathcal{S}^{\perp} = \mathcal{T} \oplus \mathcal{T}^{\perp}$ are two different decompositions of \mathcal{H} such that $\mathcal{S}^{\perp} \cap \mathcal{T}^{\perp} = \{0\}$. Observe that, by Theorem 2.4, this condition means that $\mathcal{S} + \mathcal{T}$ is dense in \mathcal{H} or, equivalently, $\overline{P_{\mathcal{T}^{\perp}}(\mathcal{S})} = \mathcal{T}^{\perp}$. Under this hypothesis, the following problem is one of those studied by Leblond and Partington in [[35], Section 4]:

(i) describe $P_{\mathcal{T}^{\perp}}(\mathcal{S})$;

(ii) for each $\eta \in P_{\mathcal{T}^{\perp}}(\mathcal{S})$, find a vector $\xi \in \mathcal{S}$ such that $\eta = P_{\mathcal{T}^{\perp}}\xi$.

Observe that, by Proposition 3.18, the condition $\mathcal{S}^{\perp} \cap \mathcal{T}^{\perp} = \{0\}$ is equivalent to the existence of $A \in L(\mathcal{H})^+$ such that $\overline{AS} = \mathcal{T}^{\perp}$ and (A, \mathcal{S}) is quasi-compatible. Moreover, we know that there are at least two possible choices for A, namely, $A = P_{\mathcal{S}^{\perp}} + P_{\mathcal{T}^{\perp}}$ and $A = P_{\mathcal{T}^{\perp}}$. In the next result we study the problems (i) and (ii) in the context of quasi-compatibility. This approach allows to get simple descriptions of (i) and (ii).

Proposition 5.1. Let (A, S) a quasi-compatible pair. If $\eta \in P_{\overline{AS}}(S) \setminus S$ then

$$\{\xi \in \mathcal{S} : \eta = P_{\overline{AS}}\xi\} = \{Q\eta : Q \in \mathcal{P}(A,\mathcal{S})\}. \tag{5}$$

Moreover, if $\mathcal{N} = \{0\}$ then

$$\{\xi \in \mathcal{S} : \eta = P_{\overline{AS}}\xi\} = \{P_{A,\mathcal{S}}\eta\}. \tag{6}$$

Proof. Recall that, by Lemma 3.10, $P_{\overline{AS}}(S) = S_A \cap \overline{AS}$. Given $\eta \in P_{\overline{AS}}(S) \setminus S$ let $\xi \in S$ such that $\eta = P_{\overline{AS}}\xi$. Since $P_{\overline{AS}}\eta = P_{\overline{AS}}\xi$ it follows that $\eta - \xi \in (AS)^{\perp}$. Furthermore, as $\eta \notin S$ then $\eta - \xi \notin S$. Observe that $span\{\eta - \xi\} + \mathcal{N} \subseteq (AS)^{\perp}$ is a closed subspace. Define $\mathcal{T} = (span\{\eta - \xi\} + \mathcal{N})^{\perp} \cap (AS)^{\perp}$ and $\mathcal{W} = \mathcal{T} + span\{\eta - \xi\} \subseteq (AS)^{\perp}$. Then \mathcal{W} is a closed subspace and it holds that $S + \mathcal{W} = S_A$. Therefore $Q = P_{S//\mathcal{W}} \in \mathcal{P}(A, S)$ and we get $0 = Q(\eta - \xi) = Q\eta - \xi$. So, $\xi = Q\eta$ as claimed. Conversely, given $\eta \in P_{\overline{AS}}(S) \setminus S$ take $Q \in \mathcal{P}(A, S)$ and define $\xi = Q\eta$. Then, $P_{\overline{AS}}\xi = P_{\overline{AS}}Q\eta = P_{\overline{AS}}|_{S_A}\eta = \eta$. So, identity (5) holds. To get (6) it is sufficient to note that if $\mathcal{N} = \{0\}$ then $\mathcal{P}(A, S) = \{P_{A,S}\}$.

Remark 5.2. If (A, S) is quasi-compatible and $\eta \in P_{\overline{AS}}(S) \cap S$ then it is easy to check that the inclusion $\{Q\eta: Q \in \mathcal{P}(A, S)\} \subseteq \{\xi \in S: \eta = P_{\overline{AS}}\xi\}$ holds. However, the reverse inclusion does not hold in general. In fact, let $A \in L(\mathcal{H})^+$ such that (A, S) is quasi-compatible and $\mathcal{N} = S \cap N(A) \neq \{0\}$. Take $\xi = \rho + \eta \in S$ with $0 \neq \rho \in \mathcal{N}$. Note that $\eta = P_{\overline{AS}}\xi$. Now, observe that if there exists an idempotent Q with R(Q) = S such that $\xi = Q\eta$ then $\eta = \xi$. So, $\{\xi \in S: \eta = P_{\overline{AS}}\xi\} \not\subseteq \{Q\eta: Q \in \mathcal{P}(A, S)\}$.

5.2 Abstract splines

Given T be a bounded linear operator from \mathcal{H} to a Hilbert space \mathcal{K} , consider $A = T^*T$ and $\xi \in \mathcal{H}$. The set of (T, \mathcal{S}) -spline interpolants to ξ is

$$sp(T, \mathcal{S}, \xi) = \{ \eta \in \xi + \mathcal{S} : ||T\eta|| = \min_{\sigma \in \mathcal{S}} ||T(\xi + \sigma)|| \}$$

(see [18] and [19] for a treatment of this subject). If $A = T^*T$ then this set can be rewritten as

$$sp(T, \mathcal{S}, \xi) = \{ \eta \in \xi + \mathcal{S} : ||\eta||_A = d_A(\xi, \mathcal{S}) \},$$

where $d_A(\xi, \mathcal{S}) = \inf_{\sigma \in \mathcal{S}} \|\eta - \sigma\|_A$. Following the same steps as in the proof of [[16], Theorem 3.2, item 3] we obtain that if the pair (A, \mathcal{S}) is quasi-compatible then $sp(T, \mathcal{S}, \xi)$ is not empty for every ξ in a dense subset of \mathcal{H} , namely \mathcal{S}_A . Moreover, if $\xi \in \mathcal{S}_A \setminus \mathcal{S}$ then it holds

$$sp(T, \mathcal{S}, \xi) = \{ (I - Q)\xi : Q \in \mathcal{P}(A, \mathcal{S}) \}.$$

Furthermore, in this case $(I - P_{A,S})\xi$ is the unique vector in $sp(T, S, \xi)$ with minimal norm (Proposition 3.21).

5.3 A least squares problem

In this section we present a characterization of compatibility in term of the existence of least squares solution with a constraint of the equation $A^{1/2}\xi = \eta$.

Proposition 5.3. The following assertions are equivalent:

- 1. (A, S) is compatible;
- 2. $\min_{\xi \in \mathcal{S}} ||A^{1/2}\xi \eta||$ has solution for every $\eta \in R(A^{1/2}) \oplus N(A^{1/2})$.

Proof. First, observe that to find $\min\{\|A^{1/2}\xi - \eta\| : \xi \in \mathcal{S}\}\$ is equivalent to find $\min\{\|A^{1/2}P_{\mathcal{S}}\xi - \eta\| : \xi \in \mathcal{H}\}\$. Furthermore, it holds

$$\min_{\xi \in \mathcal{S}} ||A^{1/2}\xi - \eta|| = \min_{\mu \in \mathcal{H}} ||A^{1/2}P_{\mathcal{S}}\mu - \eta||.$$
 (7)

If the pair (A,\mathcal{S}) is compatible then, by [[15], Proposition 2.14], it holds that $R(A^{1/2}) = A^{1/2}\mathcal{S} \oplus (A^{1/2}\mathcal{S})^{\perp} \cap R(A^{1/2})$. On the other hand, by (7) and [[25], Theorem 2.1.1] the equation $A^{1/2}\xi = \eta$ has least square solution in \mathcal{S} for every $\eta \in R(A^{1/2}P_{\mathcal{S}}) \oplus R(A^{1/2}P_{\mathcal{S}})^{\perp} = A^{1/2}\mathcal{S} \oplus (A^{1/2}\mathcal{S})^{\perp}$. Observe that $(A^{1/2}\mathcal{S})^{\perp} = (A^{1/2}\mathcal{S})^{\perp} \cap \overline{R(A^{1/2})} \oplus N(A^{1/2})$. Then $R(A^{1/2}) \oplus N(A^{1/2}) \subseteq R(A^{1/2}P_{\mathcal{S}}) \oplus R(A^{1/2}P_{\mathcal{S}})^{\perp}$ and so, the equation $A^{1/2}\xi = \eta$ has a least squares solution for every in \mathcal{S} for every $\xi \in R(A^{1/2}) \oplus N(A^{1/2})$. Conversely, if item \mathcal{Z} holds then, by (7) and [[25], Theorem 2.1.1], we get that $R(A^{1/2}) \oplus N(A^{1/2}) \subseteq A^{1/2}\mathcal{S} \oplus (A^{1/2}\mathcal{S})^{\perp} = A^{1/2}\mathcal{S} \oplus (A^{1/2}\mathcal{S})^{\perp} \cap \overline{R(A^{1/2})} \oplus N(A^{1/2})$. Let us see that $R(A^{1/2}) = A^{1/2}\mathcal{S} \oplus (A^{1/2}\mathcal{S})^{\perp} \cap R(A^{1/2})$. In fact, let $\xi = \mu + \rho + \theta \in R(A^{1/2})$; where $\mu \in A^{1/2}\mathcal{S}$, $\rho \in (A^{1/2}\mathcal{S})^{\perp} \cap \overline{R(A^{1/2})}$ and $\theta \in N(A^{1/2})$. Then $\theta = \xi - \mu - \rho \in \overline{R(A^{1/2})} \cap N(A^{1/2}) = \{0\}$. So, $\xi = \mu + \rho$. Furthermore, $\rho = \xi - \mu \in (A^{1/2}\mathcal{S})^{\perp} \cap R(A^{1/2})$. Therefore $R(A^{1/2}) \subseteq A^{1/2}\mathcal{S} \oplus (A^{1/2}\mathcal{S})^{\perp} \cap R(A^{1/2})$. The other inclusion is trivial. Then, by [[15], Proposition 2.14], we get that the pair (A,\mathcal{S}) is compatible.

Remark 5.4. In a similar way it can be proven that if (A, \mathcal{S}) is quasi-compatible then $A^{1/2}\xi = \eta$ has a least squares solution in \mathcal{S} for every η in a dense subset of \mathcal{H} , namely, for every $\eta \in A^{1/2}\mathcal{S} + (A^{1/2}\mathcal{S})^{\perp} \cap \overline{R(A^{1/2})} \oplus N(A^{1/2})$. Observe that $(A^{1/2}\mathcal{S})^{\perp} \cap \overline{R(A^{1/2})} = \overline{(A^{1/2})^{\perp}} \cap \overline{R(A^{1/2})}$ and that, if (A, \mathcal{S}) is quasi-compatible, then $A^{1/2}\mathcal{S}_A = A^{1/2}\mathcal{S} \oplus (A^{1/2})^{\perp} \cap R(A^{1/2})$ is dense in $R(A^{1/2})$.

References

- [1] N. I. Akhiezer, I. M. Glazman; *Theory of linear operators in Hilbert space*, Translet from Russian and with a preface by Merlyn Nestell. Reprint of the 1961 and 1963 translations, Dover Publications, Inc., New York, 1993.
- [2] W.N. Anderson, Jr. and M. Schreiber; The infimum of two projections, Acta Sci. Math. (Szeged) 33 (1972), 165-168.
- [3] T. Ando; Projections in Krein spaces. Linear Algebra Appl. 431 (2009), 2346-2358.
- [4] T. Ando; Unbounded or bounded idempotent operators in Hilbert spaces, Linear Algebra Appl. (2011), doi:10.1016/j.laa.2011.06.047
- [5] J. Antezana, G. Corach; Sampling theory, oblique projections and a question by Smale and Zhou, Applied and Computational Harmonic Analysis Volume 21, Issue 2 (2006), 245-253.
- [6] J. Antezana, G. Corach, M. Ruiz; D. Stojanoff, Weighted projections and Riesz frames, Linear Algebra and its Applications 402 (2005), 367-389.
- [7] A. Ben-Israel, T.N.E Greville; Generalized inverses, (3rd edition), Springer-Verlag, New York, 2003.

- [8] B. Booß-Bavnbek, M. Lesch, C. Zhu; The Calderón projection: new definition and applications, J. Geom. Phys. 59 (2009), 784-826.
- [9] D. Buckholtz; Hilbert space idempotents and involutions, Proc. Amer. Math. Soc. 5 (1999), 1415-1418.
- [10] J. B. Conway; A course in functional analysis, Springer-Verlag, New York, 1985.
- [11] G. Corach, J. Giribet, A. Maestripieri; Sard's approximation processes and oblique projections, Studia Math. 194 (2009), 65-80.
- [12] G. Corach, A. Maestripieri; Weighted generalized inverses, oblique projections, and least-squares problems, Numer. Funct. Anal. Optim. 26 (2005), 659-673.
- [13] G. Corach, A. Maestripieri; Redundant decompositions, angles between subspaces and oblique projections, Publ. Mat. 54 (2010), 461-484.
- [14] G. Corach, A. Maestripieri; Products of orthogonal projections and polar decompositions, Linear Algebra and its Applications 434 (2011), 1594-1609.
- [15] G. Corach, A. Maestripieri, D. Stojanoff; A classification of projectors, Banach Center Publ. 67, Polish Acad. Sci., Warsaw 2005, 145-160.
- [16] G. Corach, A. Maestripieri, D. Stojanoff; Oblique projections and abstract splines, Journal of Approximation Theory, 117, 2 (2002), 189-206.
- [17] G. Corach, A. Maestripieri, D. Stojanoff; Schur complements and oblique projections, Acta Sci. Math 67 (2001), 337-356.
- [18] C. deBoor; Convergence of abstract splines, J. Approx. Theory 31 (1981), 80-89.
- [19] F. Deutsch; The angle between subspaces of a Hilbert space: "Approximation theory, wavelets and applications", (Maratea 1994), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 454 (1995), 107-130.
- [20] F. Deutsch; Best approximation in inner product spaces. Springer-Verlag, New York, 2001.
- [21] R. G. Douglas; On majorization, factorization and range inclusion of operators in Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413-416.
- [22] P. A. Fillmore, J. P. Williams; On operator ranges, Advances in Math. 7 (1971), 254-281.
- [23] T. N. Greville; Solutions of the matrix equation XAX = X and relations between oblique and orthogonal projectors, SIAM J. Appl. Math. 26 (1974), 828-832.
- [24] A. Gheondea; Canonical forms of unbounded unitary operators in Krein spaces, Publ. Res. Inst. Math. Sci. 24 (1988), 205-224.
- [25] C. W. Groetsch; Generalized inverses of linear operators: representation and approximation, M. Dekker, New York, 1977.
- [26] P. R. Halmos; Introduction to Hilbert spaces and the theory of spectral multiplicity, Chelsea Publishing Company, New York, 1972.
- [27] S. Hassi, K. Nordström; On projections in a space with an indefinite metric, Linear Algebra Appl. 208/209 (1994), 401-417.
- [28] S.Izumino, Y. Watatani; Appendix to [31].
- [29] T. Kato; Notes on projections and perturbation theory, Technical Report N° 9, University of California, 1955, unpublished.
- [30] T. Kato; Perturbation theory for linear operators, Springer-Verlag, Berlin/Heidelberg, 1966.
- [31] Y. Kato, Some theorems on projections of von Neumann algebras, Math. Japon. 21 (1976), 367-370.
- [32] M. G. Krein, The theory of self-adjoint extensions of semibounded Hermitian operators and its applications, Mat. Sb. (N. S.) 20 (62) (1947), 431-495.
- [33] J. J. Koliha, V. Rakočević; Fredholm properties of the difference of orthogonal projections in a Hilbert space, Integr. Equ. Oper. Theory 52 (2005), 125-134.

- [34] G. Langer; Maximal dual pairs of invariant subspaces of J-self-adjoint operators, (Russian) Mat. Zametki 7 (1970) 443-447.
- [35] J. Leblond, J. R. Partington; Constrained approximation and interpolation in Hilbert function spaces, J. Math. Anal. Appl. 234 (1999), 500-513.
- [36] A. Maestripieri and F. Martínez Pería; Decomposition of selfadjoint projections in Krein spaces, Acta Sci. Math. 72 (2006), 611-638.
- [37] S. Ota; Unbounded nilpotents and idempotents, J. Math. Anal. Appl. 132 (1988), 300-308.
- [38] S. Popovych; Unbounded idempotents, Methods Funct. Anal. Topology 5 (1999), 95-103.
- [39] H. Radjavi, J. P. Williams; Products of selfadjoint operators. Michigan Math. J. 16 (1969), 177-185.
- [40] M. Reed, B. Simon; Methods of modern mathematical physics. Volume I: Functional Analysis. Academic Press, New York, 1972
- [41] W. Rudin; Functional Analysis, McGraw-Hill Series in Higher Mathematics., New York-Düsseldorf-Johannesburg, 1973.
- [42] Y. Samoilenko, L. Turowska; On bounded and unbounded idempotents whose sum is a multiple of the identity, Methods Funct. Anal. Topology 8 (2002), 79-100.
- [43] A. Sard; Approximation and variance, Trans. Amer. Math. Soc. 73 (1952), 428-446.

Gustavo Corach Facultad de Ingeniería-Universidad de Buenos Aires, and Instituto Argentino de Matemática-CONICET, Saavedra 15, 1083 - Buenos Aires, Argentina. e-mail: gcorach@fi.uba.ar

M. Celeste Gonzalez Instituto de Ciencias-Universidad Nacional de General Sarmiento, and Instituto Argentino de Matemática-CONICET, e-mail: celeste.gonzalez@conicet.gov.ar

Alejandra Maestripieri

Facultad de Ingeniería-Universidad de Buenos Aires, Instituto Argentino de Matemática-CONICET, e-mail: amaĕstri@fi.uba.ar