Split partial isometries

E. Andruchow, G. Corach, M. Mbekhta

February 25, 2011

Abstract

A partial isometry V is said to be a *split* partial isometry if $\mathcal{H} = R(V) + N(V)$, with $R(V) \cap N(V) = \{0\}$ (R(V) = range of V, N(V) = null-space of V). We study the topological properties of the set \mathcal{I}_0 of such partial isometries. Denote by \mathcal{I} the set of all partial isometries of $\mathcal{B}(\mathcal{H})$, and by \mathcal{I}_N the set of normal partial isometries. Then

$$\mathcal{I}_N \subset \mathcal{I}_0 \subset \mathcal{I}$$
,

and the inclusions are proper. It is known that \mathcal{I} is a C^{∞} -submanifold of $\mathcal{B}(\mathcal{H})$. It is shown here that \mathcal{I}_0 is open in \mathcal{I} , therefore is has also C^{∞} -local structure.

We characterize the set \mathcal{I}_0 , in terms of metric properties, existence of special pseudoinverses, and a property of the spectrum and the resolvent of V. The connected components of \mathcal{I}_0 are characterized: $V_0, V_1 \in \mathcal{I}_0$ lie in the same connected component if and only if

$$\dim R(V_0) = \dim R(V_1)$$
 and $\dim R(V_0)^{\perp} = \dim R(V_1)^{\perp}$.

This result is known for normal partial isometries.

2010 MSC: 47A05, 47B15.

Keywords: partial isometries, projections, idempotents.

1 Introduction

Partial isometries were first defined by John von Neumann, as the "argument" part of the polar decomposition of closed linear operators om Hilbert spaces. Halmos and collaborators [8] studied same topological features of the set \mathcal{I} of all partial isometries of a fixed Hilbert space \mathcal{H}

In this paper a class of partial isometries is studied. We say that v is a *split partial isometry* if \mathcal{H} is the direct sum of its range R(V) and its null-space N(V). The set \mathcal{I}_0 of all such partial isometries is a proper subset of \mathcal{I} , which contains properly the set \mathcal{I}_N of normal partial isometries (i.e. $R(V) = N(V)^{\perp}$), and, a fortiori, contains the set \mathcal{P} of all orthogonal projections in \mathcal{H} .

Let us fix some notation. Let \mathcal{H} be a Hilbert space, $\mathcal{B}(\mathcal{H})$ the space of bounded operators acting in \mathcal{H} , $Gl(\mathcal{H})$ the group of invertible operators, and $\mathcal{U}(\mathcal{H})$ the unitary group of \mathcal{H} . If $A \in \mathcal{B}(\mathcal{H})$ is an operator, we denote by R(A) its range, by N(A) its null-space, and by $\sigma(A)$ its spectrum. Two closed subspaces \mathcal{S} , \mathcal{T} of \mathcal{H} are said to be in direct sum if $\mathcal{S} + \mathcal{T} = \mathcal{H}$ and $\mathcal{S} \cap \mathcal{T} = \{0\}$, in symbols, $\mathcal{S} \dot{+} \mathcal{T} = \mathcal{H}$ (we shall reserve the notation $\mathcal{S} \oplus \mathcal{T} = \mathcal{H}$ for the case when the subspaces are orthogonal). A direct sum splitting as above gives rise to an *idempotent*

operator in $\mathcal{B}(\mathcal{H})$: E(s+t)=s and (1-E)(s+t)=t. E shall be called a projection when \mathcal{S} and \mathcal{T} are orthogonal, and denoted $E=P_{\mathcal{S}}$.

As said above, \mathcal{I} is the set of partial isometries of \mathcal{H} , i.e.

$$\mathcal{I} = \{ V \in \mathcal{B}(\mathcal{H}) : V \text{ is isometric between } N(V)^{\perp} \text{ and } R(V) \}.$$

Equivalently, V^*V and / or VV^* are projections. In that case V^*V is the projection onto $N(V)^{\perp}$ (also called the initial space of V), and VV^* is the projection onto R(V) (the final space of V). There are several papers dealing with the structure of \mathcal{I} , topological or geometrical, among them [8], [11], [12], [1], [2].

We shall study here a class of partial isometries, which we shall call *split isometries* and denote by \mathcal{I}_0 , namely

$$\mathcal{I}_0 = \{ V \in \mathcal{I} : N(V) \dot{+} R(V) = \mathcal{H} \}.$$

Examples of split isometries are selfadjoint projections, partial isometries whose range and null-spaces are mutually orthogonal (=normal partial isometries), and partial isometries which appear in the polar decomposition of an oblique projection ([5]). It is apparent that this class \mathcal{I}_0 is invariant under inner conjugation by unitary operators.

The contents of the paper are the following. Section 2 contains further notations, preliminaries, results on partial isometries and several characteristic properties the set \mathcal{I}_0 of split partial isometries. For instance, $V \in \mathcal{I}_0$ if and only if it admits a commuting pseudo-inverse, or if 0 is a pole of order one of the resolvent (Theorem 2.2). Some of these properties are based in a theorem by Buckholtz [3] on pairs of otrthogonal projections P,Q such that $R(P) + R(Q) = \mathcal{H}$. In Section 3 we examine the local structure of \mathcal{I}_0 . It is shown that \mathcal{I}_0 is a submanifold of $\mathcal{B}(\mathcal{H})$. Also it is shown that a partial isometry lying close enough to a projection, belongs to \mathcal{I}_0 : (Theorem 3.5) if $V \in \mathcal{I}$ and P a projection with ||V - P|| < 1/3, then $V \in \mathcal{I}_0$. In section 4 we study the relationship between \mathcal{I}_0 and the set \mathcal{I}_N of normal partial isometries. We prove that each $V \in \mathcal{I}_0$ gives rise to a unique selfadjoint operator X_V , with $||X_V|| < \pi/2$, which is co-diagonal with respect to the initial projection of V, such that $e^{-iX_V}V$ is normal. Therefore \mathcal{I}_0 decomposes as pairs $(X_V, e^{-iX_V}V)$. This implies that the space of split partial isometries have the same homotopy type as the space of normal partial isometries. For instance, it is shown that if $V_0, V_1 \in \mathcal{I}_0$ verify

$$\dim R(V_0) = \dim R(V_1)$$
 and $\dim R(V_0)^{\perp} = \dim R(V_1)^{\perp}$,

then they can be joined by a smooth curve in \mathcal{I}_0 .

2 Split partial isometries

The following result is known, and will be useful below. We transcribe as it was stated by Buckholtz in [3]

Lemma 2.1. Let \mathcal{R}, \mathcal{K} be closed subspaces in \mathcal{H} . Then

$$\mathcal{R}\dot{+}\mathcal{K} = \mathcal{H}$$

if and only if

$$P_{\mathcal{R}} - P_{\mathcal{K}} \in Gl(\mathcal{H}).$$

if and only if

$$||P_{\mathcal{R}} + P_{\mathcal{K}} - 1|| < 1.$$

In that case, the idempotent onto \mathcal{R} induced by the decomposition is $E = P_{\mathcal{R}}(P_{\mathcal{R}} - P_{\mathcal{K}})^{-1}Q$.

See, for instance, [3] and [4].

The next result gives several characterizations of the class of split isometries.

Theorem 2.2. Let $V \in \mathcal{I}$, a non invertible partial isometry. Then the following are equivalent:

- 1. $V \in \mathcal{I}_0$.
- 2. $||V^*V VV^*|| < 1$.
- 3. $V^*V + VV^* 1 \in Gl(\mathcal{H})$.
- 4. There exists $W \in \mathcal{B}(\mathcal{H})$ such that

$$WVW = W$$
, $VWV = V$, and $WV = VW$.

Such W is unique with these properties.

- 5. There exist $S, R \in \mathcal{B}(\mathcal{H})$ with S invertible and R an idempotent, such that V = SR = RS.
- 6. There exists an invertible operator T which commutes with V, such that V = VTV.
- 7. $0 \in \sigma(V)$ is isolated, and it is a pole of order 1 of the resolvent of V.

Proof. Let us first prove the equivalences, then the additional property. 1) is equivalent to 2) or 3) by the Lemma above: put $\mathcal{R} = R(V)$ and $\mathcal{K} = N(V)$.

Suppose 3), i.e. $V^*V + VV^* - 1 \in Gl(\mathcal{H})$, and let $C = (V^*V + VV^* - 1)^{-1}$. Using that $VV^*V = V$ and $V^*VV^* = V^*$, one has that

$$V = V(V^*V + VV^* - 1)C = V^2V^*C,$$

and that

$$V = C(V^*V + VV^* - 1)V = CV^*V^2.$$

Note that this implies that

$$VV^*C = CV^*V. (1)$$

Indeed, $VV^*C = CV^*V^2V^*C = CV^*(V^2V^*C) = CV^*V$. This intertwining property of C and the two formulas above imply the identities

$$V = V^2 V^* C = V C V^* V$$
 and $V = C V^* V^2 = V V^* C V$. (2)

Multiplying the first identity in (2) on the right by V^* gives

$$VV^* = VCV^*VV^* = VCV^*. (3)$$

Multiplying the second identity in (2) on the left by V^* gives

$$V^*V = V^*VV^*CV = V^*CV. (4)$$

Put $W = CV^*C = CV^*VV^*C$. Then, by (3) and (4),

$$VWV = VCV^*CV = VV^*CV = VV^*V = V$$

and

$$WVW = CV^*CVCV^*C = CV^*VCV^*C = CV^*VV^*C = CV^*C.$$

Finally, using again also (1)

$$VW = VCV^*C = VV^*C = CV^*V = CV^*CV = WV.$$

Let us prove now that this last property (that V has a commuting pseudoinverse W) implies that $V \in \mathcal{I}_0$. Note that Q = WV = VW is an idempotent operator, with N(Q) = N(WV) = N(V) and R(Q) = R(VW) = R(V), and the proof follows.

Suppose 4) holds. Let R = VW and S = V + 1 - VW. Then $R^2 = R$ and S is invertible with $S^{-1} = W + 1 - WV$. Clearly,

$$V = SR = RS$$
.

This proves 5).

Suppose 5) holds. Then 6) follows with $T = S^{-1}$. In fact, VT = TV and

$$VTV = VS^{-1}V = VS^{-1}SR = VR = SR^2 = SR = V.$$

Suppose 6) holds. Then 4) follows with $W = T^2V$. Indeed, VW = WV and

$$VWV = VT^{2}V^{2} = VTVTV = VTV = V; \quad WVW = T^{2}V^{2}T^{2}V = T^{2}V = W.$$

- 4) \Longrightarrow 1). Since, VW = WV, the identity 1 = VW + (1 VW) = VW + (1 VW), show 1) holds.
 - 1) is equivalent to 7) (see [15], Th. 10.1 and 10.2)

That the commuting pseudoinverse, when it exists, is unique, is known (see, for instance, [9]).

As it was noted in the introduction, a partial isometry V is normal if and only if $N(V) \oplus R(V) = \mathcal{H}$.

Remark 2.3. 1. Let $T \in \mathcal{B}(\mathcal{H})$ with Moore-Penrose inverse T^{\dagger} . Then

$$TT^{\dagger} = T^{\dagger}T \iff \mathcal{H} = N(T) \oplus R(T).$$

Indeed, suppose $TT^{\dagger} = T^{\dagger}T$. Then $R(T) = R(TT^{\dagger})$ and $N(T) = N(T^{\dagger}T) = N(TT^{\dagger})$. Since TT^{\dagger} is orthogonal projection, we have $\mathcal{H} = N(T) \oplus R(T)$. Conversely, suppose $\mathcal{H} = N(T) \oplus R(T)$; then the orthogonal complement of N(T) is R(T) and therefore $TT^{\dagger} = P_{R(T)} = P_{N(T)^{\perp}} = T^{\dagger}T$.

2. Using the Lemma above, note that if $V \in \mathcal{I}_0$, then the idempotent onto R(V) given by the decomposition $R(V) + N(V) = \mathcal{H}$ is

$$VV^*CV^*V = VV^*C = CV^*V.$$

- 3. By the theorem above (for instance, condition 2)), it clear that $V \in \mathcal{I}_0$ if and only if $V^* \in \mathcal{I}_0$.
- 4. Denote by \mathcal{Q} the set of idempotents in $\mathcal{B}(\mathcal{H})$. If $T \in \mathcal{B}(\mathcal{H})$, let V_T be the (unique) partial isometry in the polar decomposition of T, $T = V_T |T|$ (with initial space $R(T)^{\perp}$ and final space $\overline{R(T)}$. It is easy to prove that the map $\alpha : \mathcal{I}_0 \to \mathcal{Q}$, defined by $\alpha(V) = VV^*C = CV^*V$ is surjective, and that the map $\beta : \mathcal{Q} \to \mathcal{I}_0$ defined by $\beta(E) = V_E$ is a right inverse of α , i.e., $\alpha(\beta(E)) = E$ for every $E \in \mathcal{Q}$. It is apparent that α is continuous. Continuity of the map β was proved in [5].

Theorem 2.4. Let $V \in \mathcal{I}_0$. Then $V^2 \in \mathcal{I}$ if and only if V is normal.

Proof. Clearly, V normal implies $V^2 \in \mathcal{I}$. Suppose $V^2 \in \mathcal{I}$. Let us first prove that $VV^{*2}V$ is orthogonal projection. Indeed, $(VV^{*2}V)^2 = VV^{*2}VVV^{*2}V = VV^{*2}V^2V^{*2}V = VV^{*2}V$. And, since $\|VV^{*2}V\| \le 1$, $VV^{*2}V$ is an orthogonal projection. Thus, in particular $VV^{*2}V = (VV^{*2}V)^* = V^*V^2V^*$. We claim that $N(V) = N(V^*)$. Let $x \in N(V)$. Then, $V^*V^2V^*x = VV^{*2}Vx = 0$. Thus, $V^2V^*x \in N(V^*) \cap R(V^2) = N(V^*) \cap R(V) = \{0\}$ (since $V \in \mathcal{I}_0$). Therefore, $V^2V^*x = 0$ and thus, $V^*x \in N(V^2) \cap R(V^*) = N(V) \cap R(V^*) = \{0\}$. That is $x \in N(V^*)$ and $N(V) \subseteq N(V^*)$. the other inclusion follows by symmetry. Finally, we have, $N(V) = N(V^*) = R(V)^{\perp}$ and thus $\mathcal{H} = N(V) \oplus R(V)$, i.e. V is normal. \square

The next result characterizes the operators $T \in \mathcal{B}(\mathcal{H})$ such that the partial isometry in the polar decomposition belongs to \mathcal{I}_0 . Recall that the polar decomposition of $T \in \mathcal{B}(\mathcal{H})$ is the factorization T = V|T|, where V is a partial isometry such that N(V) = N(T) and $|T| = (T^*T)^{1/2}$. It can be shown that V is uniquely determined by these properties, and it will be denoted V_T . Morevover, it holds that $R(V_T) = \overline{R(T)}$ and $T = |T^*|V_T$.

Proposition 2.5. Given $T \in \mathcal{B}(\mathcal{H})$, V_T belongs to \mathcal{I}_0 if and only if $\mathcal{H} = \overline{R(T)} \dot{+} N(T)$.

Proof. By the definition of \mathcal{I}_0 , if $V_T \in \mathcal{I}_0$ then $\mathcal{H} = R(V_T) \dot{+} N(V_T) = \overline{R(T)} \dot{+} N(T)$. The converse is evident.

As remarked in the introduction, one has the strict inclusions

$$\mathcal{P} \subset \mathcal{I}_N \subset \mathcal{I}_0 \subset \mathcal{I}$$
.

It is apparent that the first inclusion is strict. Let us write a simple example of a non normal partial isometry in \mathcal{I}_0 . Let \mathcal{S}, \mathcal{T} be two non orthogonal subspaces such that $\mathcal{S} \dotplus \mathcal{T} = \mathcal{H}$. Then $\dim \mathcal{S} = \dim \mathcal{T}^{\perp}$. Pick $\{\xi_i : i \in I\}$ and $\{\eta_i : i \in I\}$ orthonormal bases of \mathcal{S} and \mathcal{T}^{\perp} , respectively. Define $V\eta_i = \xi_i$ and $V|_{\mathcal{T}} = 0$. Then $V \in \mathcal{I}_0 \setminus \mathcal{I}_N$. Finally, let $\mathcal{S} \subset \mathcal{H}$ be an infinite dimensional closed subspace such that \mathcal{S}^{\perp} is also infinite dimensional, and let W be isometric between \mathcal{S} and \mathcal{S}^{\perp} . Then $W \in \mathcal{I} \setminus \mathcal{I}_0$.

3 Local structure of \mathcal{I}_0

In this section we examine the local structure of \mathcal{I}_0 . First we note that \mathcal{I}_0 is a differentiable manifold. In [2] it was shown the set \mathcal{I} is a C^{∞} -submanifold of $\mathcal{B}(\mathcal{H})$. Then the following is apparent:

Corollary 3.1. The set \mathcal{I}_0 is a C^{∞} -submanifold of $\mathcal{B}(\mathcal{H})$

Proof. By the characterization of \mathcal{I}_0 in the Theorem of the previous section, it is clear that \mathcal{I}_0 is open in \mathcal{I} , which is a complemented C^{∞} -submanifold of $\mathcal{B}(\mathcal{H})$ (see [1]).

The following Lemma will be useful. First recall the basic fact that unitary operators close enough to the identity have unique logarithms, in the following sense: if $U \in \mathcal{U}(\mathcal{H})$ and ||U-1|| < 2, then there exists a unique $X \in \mathcal{B}(\mathcal{H})$ with $X^* = X$ and $||X|| < \pi$ such that $U = e^{iX}$.

Lemma 3.2. Let $A, X \in \mathcal{B}(\mathcal{H})$ with $X^* = X$ and $||X|| \leq \pi$. If $||e^{iX}A - A|| < R$, then

$$||e^{itX}A - A|| < R,$$

for all t with $|t| \leq 1$

Proof. First note that $||e^{iX}A - A|| < R$ implies that

$$||e^{-iX}A - A|| = ||e^{-iX}(A - e^{iX}A)|| = ||e^{iX}A - A|| < R.$$

Let $\xi \in \mathcal{H}$, $\xi \neq 0$, and consider $f_{\xi}(t) = ||e^{itX}\xi - \xi||^2$. Apparently,

$$\dot{f}_{\xi}(t) = -2 \ Re \ i < Xe^{itX}\xi, \xi >).$$

We claim that $\dot{f}_{\xi}(t) \geq 0$ for $0 \leq t \leq 1$ and $\dot{f}_{\xi}(t) \leq 0$ for $-1 \leq t \leq 0$. Suppose first that X has finite spectrum, i.e.

$$X = \sum_{j=1}^{n} \alpha_j P_j,$$

with P_j mutually orthogonal selfadjoint projections, and $\alpha_j \in \mathbb{R}$ with $|\alpha_j| \leq \pi$. Put $\xi_j = P_j \xi$. Then $X\xi_j = \alpha_j \xi_j$ and $e^{itX}\xi_j = e^{it\alpha_j}\xi_j$. Then

$$\dot{f}_{\xi}(t) = -2 \operatorname{Re} i < \sum_{j=1}^{n} \alpha_{j} e^{it\alpha_{j}} \xi_{j}, \sum_{k=1}^{n} \xi_{k} >) = -2 \operatorname{Re} \left(i \sum_{j=1}^{n} \alpha_{j} e^{it\alpha_{j}} \|\xi_{j}\|^{2}\right).$$

Note that

$$-2 Re(i\alpha_j e^{it\alpha_j}) = \alpha_j \sin(t\alpha_j) = |\alpha_j| \sin(t|\alpha_j|).$$

Since $|\alpha_j| \leq \pi$ for all $j = 1, \ldots, n$, $\dot{f}_{\xi}(t) \geq 0$, if $0 \leq t \leq 1$, and $\dot{f}_{\xi}(t) \geq 0$, if $-1 \leq t \leq 0$. Thus the assertion is true in this case.

For an arbitrary $X = X^*$, there exists a sequence $X_k = X_k^*$ with X_k of finite spectrum and $||X_k|| \le \pi$, such that $||X_k - X|| \to 0$. Since for each X_k it holds that $-Re(i < X_k e^{itX_k} \xi, \xi >) \ge 0$ for $0 \le t \le 1$, then also

$$-Re(i < Xe^{itX}\xi, \xi >) \ge 0, \text{ for } 0 \le t \le 1.$$

It follows that $f_{\xi}(t) = \|e^{itX}\xi - \xi\|$ is non decreasing for $t \in [0,1]$. Analogously, $f_{\xi}(t)$ is non increasing in [-1,0]. If $\eta \in \mathcal{H}$, put $\xi = A\eta$. Then $\|e^{itX}A\eta - A\eta\|$ is non decreasing in [0,1], and non increasing in [-1,0]. By hypothesis, $\|e^{iX}A - A\| < R$, thus there exists $\delta > 0$ such that $\|e^{iX}A - A\| < R - \delta$. Then

$$||e^{iX}A\eta - A\eta|| < (R - \delta)||\eta||$$

Therefore

$$||e^{itX}A\eta - A\eta|| < (R - \delta)||\eta||, \text{ for } t \in [-1, 1],$$

and thus $||e^{itX}A - A|| \le R - \delta < R$, for $t \in [-1, 1]$.

Lemma 3.3. Let P be a selfadjoint projection and U a unitary operator. Then if

$$||UP - P|| < 1,$$

it holds that

$$UR(P)\dot{+}N(P) = \mathcal{H}.$$

Proof. Suppose that U verifies the condition above. Let us check first that $U(R(P)) \cap N(P) = \{0\}$. Suppose otherwise, that there exists $\xi \in \mathcal{H}$ such that $\|P\xi\| = 1$ and $UP\xi \in N(P)$, i.e. $PUP\xi = 0$. Then

$$1 > ||UP - P||^2 \ge ||UP\xi - P\xi||^2 = ||UP\xi||^2 + ||P\xi||^2 - 2Re < UP\xi, P\xi >$$
$$= 2 - 2Re < PUP\xi, \xi > = 2,$$

a contradiction.

Let us check now that $U(R(P)) + N(P) = \mathcal{H}$. Suppose that there exists a unitary vector η orthogonal to both subspaces. Then $\eta \perp UP\xi$ for all $\xi \in \mathcal{H}$ and $\eta \perp N(P)$. The latter condition means that $P\eta = \eta$, and putting $\xi = \eta$ in the former means that $0 = \langle UP\eta, \eta \rangle = \langle UP\eta, P\eta \rangle$. This leads to a contradiction with the same computation as above. This implies that the sum is dense in \mathcal{H} . Let us check that it is closed. Let $\xi_n \in \mathcal{H}$ be a sequence in U(R(P)) + N(P) which converges to ξ . Then there exist $\eta_n, \psi_n \in \mathcal{H}$ such that $\xi_n = UP\eta_n + (1-P)\psi_n$. Then $PUP\eta_n \to P\xi$. Note that

$$||PUP - P|| = ||P(UP - P)|| \le ||UP - P|| < 1.$$

This implies that PUP is an invertible operator in $\mathcal{B}(R(P))$. In particular, this implies that the sequence $P\eta_n$ is convergent, and therefore also the sequence $UP\eta_n$. Thus also the sequence $(1-P)\psi_n$ is convergent, and this implies that the sum is closed.

The next result estimates how close a partial isometry V must be to $P_{N(V)^{\perp}}$, in order to belong to \mathcal{I}_0 . Note that $\|V - P_{N(V)^{\perp}}\| = \|V - P_{R(V)}\|$. Indeed,

$$\|V - P_{N(V)^{\perp}}\|^2 = \|V - V^*V\|^2 = \|(V - V^*V)(V^* - V^*V)\| = \|VV^* - V^* - V + V^*V\|,$$

and

$$||V - P_{R(V)}||^2 = ||V - VV^*||^2 = ||(V^* - VV^*)(V - VV^*)|| = ||V^*V - V - V^* + VV^*||.$$

Corollary 3.4. Let V be a partial isometry. If

$$||V - P_{N(V)^{\perp}}|| < 1$$

(or equivalently $||V - P_{R(V)}|| < 1$) then $V \in \mathcal{I}_0$. Moreover, in this case there exists a smooth curve V(t) in \mathcal{I}_0 , $t \in [0,1]$ of the form $V(t) = e^{itX}P_{N(V)^{\perp}}$, such that $V(0) = P_{N(V)^{\perp}}$ and V(1) = V. Analogously, one can find a curve of the form $V'(t) = P_{R(V)}e^{itY}$ joining V and $P_{R(V)}$.

Proof. The hypothesis that $||V - P_{N(V)^{\perp}}|| < 1$ implies the existence of a unitary operator U such that $V = UP_{N(V)^{\perp}}$. Indeed, in Prop. 3.1 of [2], it was proved that if two partial isometries V_1, V_2 verify $||V_1 - V_2|| < 1$, then there exist unitaries U_1, U_2 such that $V_2 = U_1V_1U_2^*$. We may apply this result to $V_1 = P_{N(V)^{\perp}}$ and $V_2 = V$:

$$V = U_1 P_{N(V)^{\perp}} U_2^*.$$

Note that

$$V^*V = U_2 P_{N(V)^{\perp}} U_1^* U_1 P_{N(V)^{\perp}} U_2^* = U_2 P_{N(V)^{\perp}} U_2^*,$$

i.e. U_2 commutes with $P_{N(V)^{\perp}}$. Therefore $V = U_1 U_2^* P_{N(V)^{\perp}}$.

There exists $X^* = X$ with $||X|| \le \pi$ such that $U = e^{iX}$. Put $V(t) = e^{itX} P_{N(V)^{\perp}}$. Clearly V(t) is smooth, $V(0) = P_{N(V)^{\perp}}$ and V(1) = V. Moreover, by the above lemmas, $e^{itX}(R(P)) + N(P) = \mathcal{H}$. Since $e^{itX}(R(P)) = R(e^{itX}P) = R(V(t))$ and $N(P) = N(e^{itX}P) = N(V(t))$, this shows that $V(t) \in \mathcal{I}_0$.

Since also V lies in the same connected component of $P = P_{R(V)}$, then there exists a unitary operator W such that $V = P_{R(V)}W^*$. Thus $||PW^* - P|| = ||WP - P|| < 1$. Then, by the lemma,

$$WR(P) \dot{+} N(P) = R(V^*) \dot{+} N(V^*) = \mathcal{H},$$

i.e. $V^* \in \mathcal{I}_0$, and thus $V \in \mathcal{I}_0$. The construction of V(t) is similar as in the previous case. \square

Next result shows that if V is close enough to an arbitrary projection, then V lies in \mathcal{I}_0 .

We shall use results from [2], concerning the structure of \mathcal{I} as a homogeneous space of $\mathcal{U}(\mathcal{H}) \times \mathcal{U}(\mathcal{H})$, by means of the action

$$(U, W) \cdot V = UVW^*, \ U, W \in \mathcal{U}(\mathcal{H}), \ V \in \mathcal{I}_0.$$

For instance, it holds that if $V_0, V_1 \in \mathcal{I}$ verify that $||V_1 - V_2|| < 1$, then there exist unitary operators γ, ν , which are polynomials in V_i, V_i^* , such that $V_2 = \gamma V_1 \nu^*$.

Theorem 3.5. If V is a partial isometry and P is a projection such that ||V - P|| < 1/3, then $V \in \mathcal{I}_0$. Moreover, there is smooth curve $V(t) \in \mathcal{I}_0$ such that V(0) = P and V(1) = V.

Proof. We recall the construction of the alluded γ and ν , for the case $V_1 = P$ and $V_2 = V$, simpler than in [2], because V_1 is a projection, and the distance between the partial isometries is less than 1/2 (rather than less than 1). Put

$$P' = V^*V$$
 and $Q' = VV^*$.

Note that

$$||P - P'|| \le ||V^*V - V^*P|| + ||V^*P - P|| \le ||V - P|| + ||V^* - P|| < \frac{2}{3} < 1.$$

Analogously ||Q'-P|| < 1. Projections at norm distance less that 1 are unitarily equivalent, and the unitaries can be chosen as smooth functions in terms of the projections (see for instance [14]). In this case, there are unitaries ν and σ such that

$$\nu P \nu^* = P'$$
 and $\sigma P \sigma^* = Q'$.

The cross section $\mu_P(V)$ in [2] performing $\mu_P(V) \cdot P = V$ is given by $\mu_P(V) = (\gamma, \nu)$, where γ is

$$\gamma = V\nu P + \sigma(1 - P).$$

Then

$$\|\nu^* \gamma P - P\| = \|\gamma P - \nu P\| = \|V \nu P - \nu P\|.$$

Note that $\nu P = P'\nu$, so that $V\nu P = VP'\nu = VV^*V\nu = V\nu$. Thus the term above equals

$$||V\nu - \nu P|| \le ||V\nu - p\nu|| + ||P\nu - \nu P|| = ||V - P|| + ||P - \nu P\nu^*|| \le 3||V - P|| < 1.$$

Then $\|\nu^*\gamma P - P\| < 1$, which by the above Lemma implies that

$$\mathcal{H} = \nu^* \gamma R(P) \dot{+} N(P) = \gamma R(P) \dot{+} \nu N(P).$$

Note that $\gamma R(P) = R(\gamma P \nu^*) = R(V)$ and $\nu N(P) = N(\gamma P \nu^*) = N(V)$, and then $V \in \mathcal{I}_0$. Moreover

$$||V - P_{N(V)}|| = ||\gamma P \nu^* - \nu P \nu^*|| = ||\nu^* \gamma P - P|| < 1,$$

which by the above result implies that V and $P_{N(V)}$ can be joined by a smooth curve inside \mathcal{I}_0 . On the other hand, P and $P_{N(V)} = \nu P \nu^*$ can also be joined by a smooth curve inside the manifold of selfadjoint projections ([14]), which is a submanifold of \mathcal{I}_0 .

Corollary 3.6. Let V_1, V_2 partial isometries with $dim N(V_1) = dim N(V_2) = codim R(V_1) = codim R(V_2)$, and let P_1 and P_2 be projections such that $||V_i - P_i|| \le 1/3$ for i = 1, 2. Then V_i lie in the same connected component of \mathcal{I}_0

Proof. Both V_1 and V_2 lie in \mathcal{I}_0 by the above Proposition. Clearly the projections P_1 and P_2 are unitarily equivalent, therefore they can be joined by a continuous curve. On the other hand, the above Proposition also states that V_1 can be joined to P_1 by means of a continuous curve inside \mathcal{I}_0 , and the same holds for V_2 and P_2 . Thus V_1 and V_2 can be joined by a continuous curve inside \mathcal{I}_0 .

4 The relationship with normal partial isometries.

In this section we study topologic properties of \mathcal{I}_0 , for instance, we characterize the connected components. It will be useful to recall how the connected components of \mathcal{I} ([11]) and \mathcal{I}_N ([2]) are parametrized. The connected components of \mathcal{I} are identified by three numbers $\iota, \kappa, \nu \in \mathbb{N}_0 \cup \{\infty\}$:

$$\mathcal{I}^{\nu}_{\iota,\kappa} = \{ V \in \mathcal{I} : dimR(V) = \iota, \ dimN(V) = \kappa, \ dimR(V)^{\perp} = \nu \},$$

with the obvious restrictions (for instance, if $\iota < \infty$, then $\nu = \infty$, etc.). If V lies in \mathcal{I}_N or in \mathcal{I}_0 , apparently $\kappa = \nu$, therefore

$$\mathcal{I}_N \subset \mathcal{I}_0 \subset \cup_{\iota,\kappa} \mathcal{I}_{\iota,\kappa}^{\kappa}$$
.

These balanced connected components $\mathcal{I}_{\iota,\kappa}^{\kappa}$, are characterized because they contain projections [2]: for each pair ι, κ , there is an orthogonal projection $P_{\iota,\kappa}$ (in fact, a whole connected component of projections) such that

$$\mathcal{I}_{\iota,\kappa}^{\kappa} = \{UP_{\iota,\kappa}W^* : U, W \in \mathcal{U}(\mathcal{H})\}.$$

An example of a non balanced isometry is the unilateral shift, or any isometry. In [2] it was shown that these numbers ι, κ parametrize the connected components of \mathcal{I}_N , more precisely, the connected components $(\mathcal{I}_N)_{\iota,\kappa}$ are:

$$(\mathcal{I}_N)_{\iota,\kappa} = \mathcal{I}_N \cap \mathcal{I}_{\iota,\kappa}^{\kappa}.$$

We shall see below that the same happens for \mathcal{I}_0 .

In a previous work [1], the first two authors studied the geometry of the set \mathcal{I}_N of normal partial isometries, i.e., partial isometries such that the initial space V^*V and the final space VV^* coincide. As remarked above, $\mathcal{I}_N \subset \mathcal{I}_0$ is a smooth submanifold. In this section we shall study the topological properties of \mathcal{I}_0 relating it to \mathcal{I}_N

Let us recall the following fact from the differential geometry of the space of projections, or Grassmannian of \mathcal{H} , denoted by \mathcal{P} , as developed by Corach, Porta and Recht ([14] and [6]):

- **Remark 4.1.** 1. The tangent space $(T\mathcal{P})_{\mathcal{P}}$ of \mathcal{P} at P consists of selfadjoint operators X which are co-diagonal with respect to P: PXP = (1 P)X(1 P) = 0.
 - 2. The manifold \mathcal{P} is a homogeneous space of $\mathcal{U}(\mathcal{H})$, by means of the action $U \cdot P = UPU^*$. If P(t) is a curve of projections, the parallel transport X(t) of a tangent vector X along P(t), with $X(t_0) = X$, is given by

$$X(t) = \Gamma(t)X\Gamma(t)^*,$$

where $\Gamma(t)$ is the curve of unitaries obtained as the unique solution of the linear equation

$$\begin{cases}
\dot{\Gamma}(t) = (\dot{P}(t)P(t) - P(t)\dot{P}(t))\Gamma(t) \\
\Gamma(t_0) = 1.
\end{cases}$$
(5)

Additionally, the curve $\Gamma(t)$ lifts P(t):

$$\Gamma(t)P(0)\Gamma(t)^* = P(t).$$

3. If P_0, P_1 are selfadjoint projections such that $||P_0 - P_1|| < 1$ then there exists a unique $X \in \mathcal{B}(\mathcal{H})$ with $X^* = X$, $||X|| < \pi/2$, which is P_0 -codiagonal

$$P_0XP_0 = (1 - P_0)X(1 - P_0) = 0,$$

such that

(a)
$$e^{iX}P_0e^{-iX} = P_1$$
.

- (b) The curve $\rho(t) = e^{itX} P_0 e^{-itX}$, $t \in [0, 1]$ is the shortest curve of projections joining P_0 and P_1 (among rectifiable curves).
- (c) If we fix P_0 , the map which sends $P_1 \mapsto X$ is smooth. It is in fact the inverse of the exponential map of the Grassmann manifold.

Note that the second equivalent condition established in Theorem 1.2 states that if $V \in \mathcal{I}_0$ then

$$||V^*V - VV^*|| < 1.$$

Therefore, by the above cited result, there exists a unique selfadjoint operator $X_V \in \mathcal{B}(\mathcal{H})$ such that

- 1. $||X_V|| < \pi/2$.
- 2. X_V is V^*V -codiagonal.
- 3. $e^{iX_V}V^*Ve^{-iX_V} = VV^*$
- 4. The map $V \mapsto X_V$ is smooth.

In particular, these conditions imply that the unitary e^{iX_V} maps $N(V)^{\perp}$ onto R(V). It follows that $e^{-iX_V}V$ is a partial isometry with initial and final space $N(V)^{\perp}$, i.e. $e^{-iX_V}V \in \mathcal{I}_N$. If $A \in \mathcal{I}_N$, put $P_A = A^*A = AA^*$. Let us denote by

$$\mathcal{E} = \{(X, A) : A \in \mathcal{I}_N, X^* = X, ||X|| < \pi/2, X \text{ is co-diagonal with respect to } P_A \}.$$

Consider \mathcal{E} with the topology induced by the norm in $\mathcal{B}(\mathcal{H}) \times \mathcal{B}(\mathcal{H})$. Therefore the following map is defined

$$\Delta: \mathcal{I}_0 \to \mathcal{E}, \quad \Delta(V) = (X_V, e^{-iX_V}V).$$
 (6)

Theorem 4.2. The map Δ is a homeomorphism.

Proof. Note that Δ is clearly continuous. We claim that its inverse is the map Π

$$\Pi: \mathcal{E} \to \mathcal{I}_0, \quad \Pi(X, A) = e^{iX}A.$$

Apparently Π is the restriction to \mathcal{E} of a continuous map defined in $\mathcal{B}(\mathcal{H}) \times \mathcal{B}(\mathcal{H})$ with an identical formula. We must check first that Π takes values in \mathcal{I}_0 . Put $V = \Pi(X, A) = e^{iX}A$. Then, using that $AA^* = A^*A = P_A$,

$$V^*V - VV^* = A^*A - e^{iX}AA^*e^{-iX} = \frac{1}{2}\{(2p_A - 1) - e^{iX}(2P_A - 1)e^{-iX}\}.$$

Since X is P_A co-diagonal, it is elementary to verify that X anti-commutes with $2P_A - 1$:

$$X(2P_A-1) = -(2P_A-1)X.$$

Thus $e^{iX}(2P_A - 1)e^{-iX} = e^{2iX}(2P_A - 1)$. It follows that

$$||V^*V - VV^*|| = \frac{1}{2}||(2P_A - 1)(1 - e^{2iX})|| = \frac{1}{2}||1 - e^{2iX}||,$$

where the last equality follows because $2P_A-1$ is a unitary operator. As remarked at the beginning of section 2, since $\|2X\|<\pi$, $\|1-e^{2iX}\|<2$ and thus $\|V^*V-VV^*\|<1$, i.e. $V\in\mathcal{I}_0$. If $V\in\mathcal{I}_0$, it is apparent that $\Pi(\Delta(V))=V$. Let $(X,A)\in\mathcal{E}$ and put $V=e^{iX}A$. Then $V^*V=A^*A$ and

$$VV^* = e^{iX}AA^*e^{iX} = e^{iX}A^*Ae^{iX} = e^{iX}V^*Ve^{iX}.$$

Since X is $P_A = V^*V$ -co-diagonal, and $||X|| < \pi/2$, by the uniqueness property of the logarithm remarked above, it follows that $X_V = X$, and therefore $\Delta\Pi(X, A) = \Delta(V) = (X, e^{-iX}V) = (X, A)$.

As recalled above, the connected components of \mathcal{I}_N are parametrized by the projections: two normal partial isometries lie in the same connected component of \mathcal{I}_N if and only if their final (=initial) projections are unitarily equivalent. Moreover, one has the following fact:

Proposition 4.3. Let P(t), $t \in [0,1]$ be a smooth curve of projections. Let $A_0, A_1 \in \mathcal{I}_N$ such that $A_i^*A_i = P(i)$ for i = 0, 1. Then there exists a continuous curve $A(t) \in \mathcal{I}_N$ such that $A^*(t)A(t) = A(t)A^*(t) = P(t)$, $A(0) = A_0$ and $A(1) = A_1$.

Proof. Let us construct a continuous (in fact it will be smooth) curve $A(t) \in \mathcal{I}_N$, $t \in [0, 1/2]$ with

$$A(0) = P(0), \ A(1/2) = P(1/2) \ \text{ and } A^*(t)A(t) = A(t)A^*(t) = P(t), \ t \in [0, 1/2].$$

Let $\Gamma(t)$ be the solution of equation (5) with $\Gamma(0) = 1$. Then $\Gamma(t)$ lifts P(t): $\Gamma(t)P(0)\Gamma^*(t) = P(t)$. The operator A_0 is a unitary operator in R(P(0)), thus there exists a selfadjoint operator X_0 which acts in R(P(0)), i.e. $P(0)X_0P(0) = X_0$, such that $A_0 = e^{iX_0}$. Since $\Gamma(t)$ lifts P(t), it follows that $X_t = \Gamma(t)X_0\Gamma(t)^*$ acts in R(P(t)):

$$P(t)X_tP(t) = \Gamma(t)P(0)X_0P(0)\Gamma^*(t) = \Gamma(t)X_0\Gamma^*(t) = X_t.$$

It follows that $A(t) = P(t)e^{i(1-2t)X_t}$ is a smooth curve, such that for each $t \in [0,1/2]$, A(t) is a unitary in R(P(t)), or in other words, $A(t) \in \mathcal{I}_N$, with $A^*(t)A(t) = A(t)A^*(t) = P(t)$, such that $A(0) = A_0$ and A(1/2) = P(1/2). Analogously, one constructs a smooth curve A(t) for $y \in [1/2,1]$ such that $A(t) \in \mathcal{I}_N$, $A^*(t)A(t) = A(t)A^*(t) = P(t)$, A(1/2) = P(1/2) and $A(1) = A_1$. Adjoining both paths, one obtains a continuous path as required (in fact smooth, except eventually at t = 1/2).

The next result shows that each connected component of \mathcal{I}_0 is the intersection of \mathcal{I}_0 with a component of \mathcal{I} .

Theorem 4.4. If $V_0, V_1 \in \mathcal{I}_0$ lie in the same connected component of \mathcal{I} , then there is a smooth curve in \mathcal{I}_0 joining them.

Proof. Since \mathcal{I} is a smooth submanifold of $\mathcal{B}(\mathcal{H})$ (see for instance [1]), if V_0, V_1 lie in the same connected component of \mathcal{I} , then there exists a smooth curve V(t) in \mathcal{I} with $V(0) = V_0$ and $V(1) = V_1$. Let $P(t) = V^*(t)V(t)$, which is a smooth curve in the Grassmannian \mathcal{P} . By the above theorem, to V_0 and V_1 correspond selfadjoint operators X_{V_0} and X_{V_1} and normal partial isometries A_0 and A_1 . In particular, as seen above, X_{V_0} , being $V_0^*V_0 = P(0)$ co-diagonal, is a tangent vector in $(T\mathcal{P})_{P(0)}$. Let X(t) be the parallel transport of X_{V_0} along the smooth

curve P(t), which consists of P(t) co-diagonal selfadjoint operators. Note that since $X(t) = \Gamma(t)X_{V_0}\Gamma(t)^*$ and $\Gamma(t)$ are unitary operators,

$$||X(t)|| = ||X_{V_0}|| < \pi/2.$$

Also note that $A_i^*A_i = A_iA_i^* = P(i)$, for i = 0, 1. By the above result on \mathcal{I}_N , there exists a smooth curve $A(t) \in \mathcal{I}_N$, with $A(0) = A_0$, $A(1) = A_1$ and

$$A(t)^*A(t) = A(t)A(t)^* = P(t).$$

Then the pairs $\alpha(t) = (X(t), A(t))$ form a continuous curve in \mathcal{E} , with initial point (X_{V_0}, A_0) . At t = 1, X(1) may be different than X_{V_1} , however both selfadjoint operators are P(1) co-diagonal, and have norms less than $\pi/2$. Consider then the curve $\beta(t) = (tX_{V_1} + (1-t)X(1), A_1), t \in [0, 1]$. The selfadjoint operators $tX_{V_1} + (1-t)X(1)$ are P(1) co-diagonal, because X_{V_1} and X_1 are. Moreover,

$$||tX_{V_1} + (1-t)X(1)|| \le t||X_{V_1}|| + (1-t)||X(1)|| < \pi/2.$$

Therefore this curve $\beta(t)$ also lies in \mathcal{E} . Adjoining α and β one obtains a continuous curve in \mathcal{E} which joins (X_{V_0}, A_0) and (X_{V_1}, A_1) . By the above theorem, this induces a continuous curve in \mathcal{I}_0 , joining V_0 and V_1 . Since \mathcal{I}_0 is a submanifold of $\mathcal{B}(\mathcal{H})$, this implies the existence of a smooth curve joining them.

In Corollary 3.4 it was shown that if $V \in \mathcal{I}$ and $||V - P_{R(V)}|| < 1$, then $V \in \mathcal{I}_0$. The following corollary is related to his property.

Corollary 4.5. If $V \in \mathcal{I}_0$, then V lies in the same component of \mathcal{I}_0 as $P_{R(V)}$. The same holds for $P_{N(V)^{\perp}}$.

Proof. Clearly V and $P_{R(V)}$ have the same range. They also have the same nullity. Indeed, the null-space of $P_{R(V)}$ is $R(V)^{\perp} = N(V^*)$. Since also $V^* \in \mathcal{I}_0$, $R(V^*) = N(V)^{\perp}$ is a supplement for this space. It follows that N(V) and $N(V^*)$ have a common supplement, namely $N(V)^{\perp}$. Therefore $\dim N(V) = \dim N(V^*) = \dim R(V)^{\perp}$. It follows that V and $P_{R(V)}$ lie in the same connected component of \mathcal{I} . Therefore, by the above theorem, they lie in the same connected component of \mathcal{I}_0 . The proof for $P_{N(V)^{\perp}}$ is analogous.

Consider the map

$$\rho: \mathcal{I}_0 \to \mathcal{I}_N, \quad \rho(V) = e^{-iX_V}V.$$

Note that, via the homeomorphism Δ , it corresponds to the projection onto the second coordinate:

$$\mathcal{E} \to \mathcal{I}_N, \ (X,A) \mapsto A,$$

is clearly a retraction. Therefore one may use it to compare the homotopy groups of \mathcal{I}_0 and \mathcal{I}_N . Note that the fibre over each element $A \in \mathcal{I}_N$ is contractible, it identifies with the open ball of radius $\pi/2$ of the Banach space

$$\{X \in \mathcal{B}(\mathcal{H}) : X^* = X, P_A X P_A = (1 - P_A) X (1 - P_A) = 0\}.$$

In [2] it was shown that if $A \in \mathcal{I}_N$, then

$$\pi_1(\mathcal{I}_N, A) \simeq \pi_1(\mathcal{U}(R(A))),$$

which is trivial if dim R(A) > 1, and equal to \mathbb{Z} if dim R(A) = 1. Therefore:

Corollary 4.6. If $V \in \mathcal{I}_0$, then

$$\pi_1(\mathcal{I}_0, V) = 0$$
 if $dim R(V) > 1$,

and

$$\pi_1(\mathcal{I}_0, V) = \mathbb{Z} \quad \text{if } dim R(V) = 1.$$

In the case when both the range and the kernel are infinite dimensional, one can prove that \mathcal{I}_0 is contractible. In order to do so, let us recall from [2] the fibre bundle μ_P . If P is a projection, denote by

$$H_P = \mathcal{U}(R(P)) \times \mathcal{U}(N(P))$$

regarded as a subgroup of $\mathcal{U}(\mathcal{H})$ (i.e., the group of unitaries which commute with P). Note that each connected component of \mathcal{I}_N (and therefore also of \mathcal{I}_0) contains selfadjoint projections. Let \mathcal{I}_N^P be the connected component of \mathcal{I}_N which contains P. Then

$$\mu_P: \mathcal{U}(\mathcal{H}) \times H_P \to \mathcal{I}_N^P, \quad \mu_P(U,\Omega) = U\Omega P U^*$$

is a locally trivial fiber bundle (Prop. 4.3 of [2]). The fibre is

$$\mathcal{F} = H_P \times \mathcal{U}(N(P)).$$

If both N(P) and R(P) are infinite dimensional, by Kuiper's theorem [7], $\mathcal{U}(\mathcal{H})$, $\mathcal{U}(N(P))$, $\mathcal{U}(R(P))$ (and therfore also H_P) are contractible. Therefore \mathcal{I}_N^P has trivial homotopy group of all orders. By the remarks, the same happens for the connected component of P in \mathcal{I}_0 . Then:

Corollary 4.7. Let $V \in \mathcal{I}_0$ such that R(V) and $R(V)^{\perp}$ (equivalently, N(V) and $N(V)^{\perp}$) are infinite dimensional. Then the connected component of \mathcal{I}_0 containing V is contractible.

Proof. By Corollary 4.5, the connected component of \mathcal{I}_0 containing V, contains also $P_{R(V)}$. By the above remark, this connected component of \mathcal{I}_0 is homotopically equivalent to \mathcal{I}_N^P for $P = P_{R(V)}$, which has infinite dimensional rank and nullity. Therefore this component \mathcal{I}_0 has trivial homotopy of all orders. Since it is a differentiable manifold, it is contractible by Palais's theorem [13].

References

- [1] E. Andruchow, G. Corach, Differential Geometry of Partial Isometries and Partial Unitaries, Illinois Journal of Mathematics 48, No. 1 (2004), 97-120
- [2] E. Andruchow, G. Corach, M. Mbekhta, On the Geometry of Generalized inverses, Math. Nachr. 278 (2005), no. 7-8, 756–770.
- [3] D. Buckholtz, Hilbert space idempotents and involutions, Proc. Amer. Math. Soc. 128 (2000), no. 5, 1415–1418.
- [4] Y-N. Chen, H-K. Du, Hong-Ke, Y-F. Pang, A SIMPLIFICATION OF THE KOVARIK FOR-MULA, J. Math. Anal. Appl. 331 (2007), 13-20.
- [5] G. Corach, A. Maestripieri, Polar decompositions of oblique projections, Linear Algebra Appl. 433 (2010), 511-519.

- [6] G. Corach, H. Porta, L. Recht, The Geometry of spaces of projections in C^* -ALGEBRAS, Adv. Math. 101 (1993), 59–77.
- [7] N. Kuiper, The homotopy type of the unitary group of Hilbert space, Topology 3 (1965), 19-30.
- [8] P. R. Halmos, J. E. McLaughlin, Partial isometries, Pacific J. Math. 13 (1963), 585–596.
- [9] R. Harte, M. Mbekhta, Generalized inverses in C^* -algebras. II, Studia Math. 106 (1993), 129-138.
- [10] K.B. Laursen, M.Mbekhta, Closed Range multipliers and generalized inverses, Studia Math. 107 (1993), 127–135.
- [11] M. Mbekhta, H. Skhiri, Partial isometries: factorization and connected components. Integral Equations Operator Theory 38 (2000), 334–349.
- [12] M. Mbekhta, S. Stratila, Homotopy classes of partial isometries in von Neumann Algebras, Acta Sci. Math. (Szeged) 68 (2002), no. 1-2, 271–277.
- [13] R.S. Palais, Homotopy theory of infinite dimensional manifolds, Topology 5 (1966), 1–16.
- [14] H. Porta, L. Recht, MINIMALITY OF GEODESICS IN GRASSMANN MANIFOLDS, Proc. Amer. Math. Soc. 100 (1987), 464–466.
- [15] A.E. Taylor, D.C. Lay, Introduction to functional analysis. Reprint of the second edition. Robert E. Krieger Publishing Co., Inc., Melbourne, FL, 1986.

E. Andruchow

Instituto de Ciencias, Universidad Nacional de Gral. Sarmiento J.M. Gutierrez 1150, (1613) Los Polvorines, Argentina and

Instituto Argentino de Matemática

Saaverdra 15, 3er. piso, (1083) Buenos Aires, Argentina.

e-mail: eandruch@ungs.edu.ar

G. Corach

Instituto Argentino de Matemática Saaverdra 15, 3er. piso, (1083) Buenos Aires, Argentina. e-mail: gcorach@fi.uba.ar

M. Mbekhta

UFR de Mathematiques, F-59655 Villeneuve d'Ascq, France e-mail: mostafa.mbekhta@agat.univ-lille1.fr