Extensions of Jacobson's Lemma Gustavo Corach, Bhaggy Duggal and Robin Harte

gcorach@fi.uba.ar;bpduggal@yahoo.co.uk;rharte@maths.tcd.ie

AMS Classification: 47A05 Keywords: Jacobson's lemma; operator equation; common spectral properties **Abstract** Jacobson's Lemma, relating different kinds of non singularity of ca - 1 and ac - 1, extends to ba - 1 whenever aca = aba.

0. Introduction Suppose A is a ring, with identity 1, or more generally an additive category: we shall write

$$A^{-1} = A_{left}^{-1} \cap A_{right}^{-1}$$

for the invertible group, with

0.2
$$A_{left}^{-1} = \{a \in A : 1 \in Aa\} , \ A_{right}^{-1} = \{a \in A : 1 \in aA\}$$

the left- and right-invertibles, and

0.3
$$A_{left}^o = \{a \in A : a^{-1}(0) = \{0\}\}, A_{right}^o = \{a \in A : a_{-1}(0) = \{0\}\}.$$

the monomorphisms and epimorphisms, with

$$a^{-1}(0) = \{x \in A : ax = 0\}, \ a_{-1}(0) = \{x \in A : ax = 0\}$$

respectively the left and the right annihilator of $a \in A$.

In a Banach algebra these are the elements which are either not left zero divisors or not right zero divisors; in the category of bounded operators between Banach spaces these are the operators which are either not one one or not dense. Now Jacobson's lemma [1],[5],[12] says that if $a, c \in A$ then

$$ac - 1 \in A^{-1} \iff ca - 1 \in A^{-1}.$$

Indeed (0.4) holds separately for the left and the right invertibles of (0.2), as well as for the non zero-divisors of (0.3): for example there is implication

$$c'(ac-1) = 1 \Longrightarrow (cc'a-1)(ca-1) = 1$$
.

The formula of (0.5) will also convert a right inverse, or a generalized inverse, for ac-1 into one for ca-1. In this note we generalise (0.4) and many of its relatives from ca-1 to certain ba-1: specifically we will suppose

$$aba = aca$$

Three special cases of are of interest: the case

$$b = c,$$

which will give Jacobson's lemma; the case in which

$$aba = aca = a$$

in which both b and c are generalized inverses of $a \in A$; and the case

$$aba = a^2$$

in which c = 1. This last case goes back to Vidav [16], cf [14],[15],[2]; in particular Schmoeger [14] shows that (0.9) holds if there are idempotents $p = p^2$, $q = q^2$ for which a = qp, b = pq.

The central results in this note are of course pure algebra: but in the neighbouring realm of topological algebra they have very close relatives, and we take the opportunity to extend our purely algebraic observations to their topological analogues.

1. Invertibility

Jacobson's Lemma is primarily about invertibility, covering both left, right and indeed generalized invertibility. The proof of our extension involves one specific act of proof, and then a curious logical syllogism:

Theorem 1 If $a, b, c \in A$ satisfy (0.6) then

$$ac - 1 \in A^{-1} \iff ba - 1 \in A^{-1}$$

and

1.2
$$ca \in A_{left}^{-1} \iff ba \in A_{left}^{-1} ; ac \in A_{right}^{-1} \iff ab \in A_{right}^{-1}$$

Proof. Towards (1.1) we claim

1.3
$$ac - 1 \in A_{left}^{-1} \Longrightarrow ba - 1 \in A_{left}^{-1},$$

and conversely

$$ba - 1 \in A_{left}^{-1} \Longrightarrow ac - 1 \in A_{left}^{-1}.$$

The basic act of proof is (1.3): if $c' \in A$ then in the presence of (0.6) there is implication

1.5
$$c'(ac-1) = 1 \Longrightarrow a = c'(ac-1)a = c'a(ba-1)$$
$$\Longrightarrow ba - 1 = bc'a(ba-1) - 1 \Longrightarrow 1 = (bc'a-1)(ba-1).$$

This applies when c = b and then continues to hold after interchanging a and b: this in particular gives Jacobson's lemma (0.5). Interchanging b and c in (1.3), and also in (0.5), now completes (1.4). The analogue of (1.3) for right invertibility follows by reversal of multiplication, applied however to the converse (1.4), after interchange of c and b.

For the first part of (1.2) we observe, in the presence of (0.6),

$$(ca)^2 \in Aba .$$

The converse is a simple interchange of b and c, and then the second part is reversal of products \bullet

Alternatively, for (1.2), notice that if (0.6) holds and either ca or ba is left invertible, then ca = ba.

Theorem 1 is familiar [1],[6],[14] when c=b (0.7), and is obtained by Schmoeger [14],[15] when c=1 (0.9). We have not been able to extend Theorem 1 from semi invertibility to "regularity", in the sense of having a generalized inverse. We cannot interchange ca and ac in (1.2): if for example a=u and b=c=v with

$$1.7 vu = 1 \neq uv$$

then ca is invertible while ac is neither left nor right invertible. We also cannot interchange A_{left}^{-1} and A_{right}^{-1} , and hence replace them both by the invertible group A^{-1} , in (1.2): for example if (1.7) holds then

1.8
$$(a = v, b = 1, c = uv) \implies (aba = v^2 = aca, (ba)u = 1, (1 - uv)(ca) = 0)$$
.

The same example shows that we cannot replace (1.3) by inclusion

$$A(ac-1) \subseteq A(ba-1) .$$

2. Monomorphism

The analogue of Theorem 1 holds for mono- and epimorphisms:

Theorem 2 If (0.6) holds then

$$2.1 ac - 1 \in A_{left}^o \iff ba - 1 \in A_{left}^o,$$

and

$$2.2 ac - 1 \in A_{right}^o \iff ba - 1 \in A_{right}^o.$$

Also

$$2.3 ca \in A_{left}^o \iff ba \in A_{left}^o ,$$

and

$$2.4 ac \in A_{right}^o \iff ab \in A_{right}^o.$$

Proof. The basic act of proof here is forward implication in (2.1). If $x \in A$ then

$$(ba-1)x = 0 \Longrightarrow (x = bax \text{ and } (ac-1)ax = a(ba-1)x = 0),$$

Thus

$$a(ba-1)^{-1}(0) \subseteq (ac-1)^{-1}(0) ,$$

and hence

$$(ac-1)^{-1}(0) \Longrightarrow (ba-1)^{-1}(0)$$
.

It follows ([1] Proposition 2)

$$(ba-1)^{-1}(0) \subseteq b(ac-1)^{-1}(0)$$

This in particular establishes forward implication in (2.1). Now the same logic as for Theorem 1 now supplies the backward implication. Also forward implication in (2.2) follows from (2.1) by "reversal of products". Finally, for forward implication in (2.3), it follows from (1.6) that

$$(ba)^{-1}(0) \subseteq (ca)^{-2}(0)$$
,

while

$$(ca)^{-1}(0) = \{0\} \Longrightarrow (ca)^{-2}(0) = \{0\} \bullet$$

If (0.6) holds and either ca or ba is monomorphic then again it follows ca = ba.

3. Topological zero divisors

If A is a normed algebra, or category, then the non zero divisors of (0.3) can be replaced by non topological zero divisors. We recall that a linear mapping $T: X \to Y$ between normed spaces is said to be bounded below if there is k > 0 for which

$$\|\cdot\| \le k\|T(\cdot)\|,$$

and that in a normed algebra $a \in A$ is a left topological zero divisor, or a right topological zero divisor precisely when the left multiplication, or right multiplication,

$$L_a: x \mapsto ax , R_a: x \mapsto xa$$

is not bounded below. Evidently for $T: X \to Y$ there is implication

 $left invertible \Longrightarrow bounded below \Longrightarrow one one$.

We shall write

3.2
$$A_{left}^{\bullet} = \{a \in A : L_a : bounded below\} ; A_{right}^{\bullet} = \{a \in A : R_a : bounded below\} ;$$

evidently

$$A_{left}^{-1} \subseteq A_{left}^{\bullet} \subseteq A_{left}^{o} ,$$

and similarly with "right" in place of "left". Thus there is also a "quantitative" version of Theorem 2: **Theorem 3** If (0.6) holds then

$$3.4 ac - 1 \in A_{left}^{\bullet} \iff ba - 1 \in A_{left}^{\bullet},$$

and

$$3.5 ac - 1 \in A^{\bullet}_{right} \iff ba - 1 \in A^{\bullet}_{right}.$$

Also

$$3.6$$
 $ca \in A_{left}^{\bullet} \iff ba \in A_{left}^{\bullet}$,

and

$$ac \in A_{right}^{\bullet} \iff ab \in A_{right}^{\bullet}$$
.

Proof. The act of proof is forward implication in (3.4): if k > 0 there is implication

3.8
$$\|\cdot\| \le k \|(ac-1)(\cdot)\| \Longrightarrow \|\cdot\| \le (\|b\|k\|a\|+1)\|(ba-1)(\cdot)\|$$

and

3.9
$$\|\cdot\| \le k \|(ac)(\cdot)\| \Longrightarrow \|\cdot\| \le k^2 \|c\| \|a\| \|(ba)(\cdot)\| :$$

for example if for arbitrary $x \in A$ we have $||x|| \le k||(ac-1)x||$ then for arbitrary x

$$||ax|| \le k||(ac-1)ax|| \le k||a|| ||(ba-1)x||$$

and hence

$$||x|| \le ||b|| ||ax|| + ||(ba - 1)x|| \le (||a||k||b|| + 1)||(ba - 1)x|| \bullet$$

Alternatively passage from A to the "enlargement" ([5] Definition 1.9.2)

$$\mathbf{Q}(A) = \ell_{\infty}(A)/c_0(A)$$

has the effect of recognising topological zero divisors $a \in A$ as giving zero divisors $\mathbf{Q}(a) \in \mathbf{Q}(A)$. The details of the construction are unimportant: all that matters is ([5] Theorem 3.3.5) that if $T: X \to Y$ then

3.11
$$T$$
 bounded below $\Longrightarrow \mathbf{Q}(T)$ one one $\Longrightarrow \mathbf{Q}(T)$ bounded below.

It follows that if $a \in A$ then

$$3.12 a \in A^{\bullet}_{left} \Longleftrightarrow \mathbf{Q}(a) \in \mathbf{Q}(A)^{o}_{left} .$$

Thus Theorem 3 is a consequence of Theorem 2 applied to the enlargement.

4. Surjectivity

The analogue of (1.4) and (2.2) hold, for linear operators, with right invertibility, or epimorphisms, replaced by the property of being "surjective", or onto:

Theorem 4 If (0.6) holds with $a: X \to Y$ and $b, c: Y \to X$ then

$$(ca-1)X = X \iff (ab-1)Y = Y.$$

Proof. If (0.6) holds then

4.2
$$b^{-1}(ca-1)X \subseteq (ab-1)Y$$
; $(ca-1)X \subseteq a^{-1}(ab-1)Y$.

Indeed

$$by = (ca-1)x \Longrightarrow aby = a(ca-1)x = (ab-1)ax \Longrightarrow y = aby - (ab-1)y = (ab-1)(ax-y)$$

and

$$x = (ca - 1)w \Longrightarrow ax = a(ca - 1)w = (ab - 1)aw$$
;

now the first part of (4.2) gives forward implication in (4.1) •

Alternatively this follows by applying (2.2) to the category of all linear operators on linear spaces. However we can "quantify" Theorem 4 to give the analogue for "openness" between normed spaces, and then "almost openness" ([5] Definition 3.4.1):

Theorem 5 If (0.6) holds there is implication

4.3
$$ca-1$$
 relatively open $\Longrightarrow ab-1$ relatively open.

Proof. Here $a: X \to Y$ is said to be "relatively open" if there is k > 0 for which

$$4.4 \qquad \forall x \in X \exists x' \in X : ax = ax' \text{ with } ||x'|| \le k ||ax||;$$

thus "open" means relatively open and onto. Following the argument of (4.2) suppose ca-1 is relatively open: then there is k>0 for which

$$by = (ca - 1)x \Longrightarrow by = (ca - 1)x'$$
 with $||x'|| < k||by||$.

It now follows

$$y \in (ab-1)Y \Longrightarrow y = aby - (ab-1)y = (ab-1)(ax'-y)$$

with

$$||ax' - y|| \le ||a|| ||x'|| + ||y|| \le (||a||k||b|| + 1)||y|| \bullet$$

Of course on Banach spaces openness and almost openness revert to the property of being onto. Between normed spaces an operator $a:X\to Y$ is dense iff its dual $a^*:Y^*\to X^*$ is one one, and is almost open iff its dual is bounded below: thus we can also derive "right" nonsingularity results from "left".

It is clear that (4.2) continues to hold if we replace the ranges of ca - 1 and ab - 1 by their closures. It is not however clear that the closed range property transfers:

$$(ac-1)Y = \operatorname{cl}(ac-1)Y \iff (ba-1)X = \operatorname{cl}(ba-1)X?$$

Certainly if (ac-1)Y is closed in Y then

$$x = \lim_n (ba - 1)x_n \Longrightarrow ax = \lim_n (ac - 1)ax_n = (ac - 1)y$$
,

giving x = b(ac - 1)y - (ba - 1)x. In the special case (0.8), with b = c, it now follows ([1] Theorem 5)

$$x = (ca - 1)(cy - x) .$$

5. Fredholm theory

When A = B(X) is the bounded operators on a Banach space, or indeed the category of all bounded operators, then Theorem 1 becomes a theorem about invertibility of operators; if instead A is either a Calkin algebra or the "Calkin category" then it is a theorem about being Fredholm. Thus the analogue of Theorem 1 holds for left and right Fredholmness. The analogue of Theorem 1 also holds for upper semi-Fredholmness: this follows from Theorem 2 together with ([5] Definition 5.7.4) an "essential" version of the enlargement,

$$\mathbf{P}(A) = \ell_{\infty}(A)/m(A) ,$$

for which

5.1 T upper semi Fredholm $\iff \mathbf{P}(T)$ one one.

If ac-1 is Fredholm, in the category of bounded linear operators on Banach spaces, so that with (0.6) also ba-1 is Fredholm, then (2.7) shows that in addition ac-1 and ba-1 have the same *nullity*, and then dually the same *defect*, and of course the same *index*: thus we learn that if (0.6) holds then

$$5.2$$
 $ac-1$ Wevl $\iff ba-1$ Wevl.

This does not appear to survive in a more abstract context:

Theorem 6 If $T:A\to D$ is a (unital) homomorphism, or more generally an additive functor, and if $a,b,c\in A$ satisfy (0.6), then

5.3 ac-1 left or right T Fredholm $\iff ba-1$ left or right T Fredholm.

Proof. We say that $a \in A$ is "T Fredholm" when $Ta \in D$ is invertible; now apply Theorem 1 to Ta, Tb, Tc in $D \bullet$

Theorem 6 hardly needed stating, but enables us to observe that the corresponding result for "T Weyl" is not clear. Suppose that (0.6) holds and that

5.4
$$ac-1 = e + u \in A_{left}^{-1} + T^{-1}(0)$$
 with $e'e-1 = 0 = T(u)$:

then, as from the argument for Theorem 1,

5.5
$$1 = (be'a - 1)(ba - 1) - be'ua : \implies (be'a - 1)(ba - 1) \in 1 + T^{-1}(0) \subset T^{-1}D^{-1}.$$

In other words, all we learn is that ba - 1 is left T Fredholm.

We have also been unable to decide whether, in the presence of (0.6), if $a \in \operatorname{cl} A^{-1}$ then there is implication

$$5.6$$
 $ac - 1 \in \text{Exp}(A) \iff ba - 1 \in \text{Exp}(A)$.

Here

5.7
$$\operatorname{Exp}(A) = \{ e^{c_1} e^{c_2} \dots e^{c_n} : n \in \mathbb{N}, c \in A^n \}$$

is the subgroup of A^{-1} generated by the exponentials, which coincides with the connected component of the identity. When c = b this is a result of Murphy ([12] Proposition 4.3).

6. Drazin invertibility

On the other hand "Drazin invertibility" transfers: we recall [8],[10] that if

$$6.1 ba^2 = a = a^2 c$$

then (0.8) holds: there is equality ba = ac and in fact bac is a "group inverse" for $a \in A$. This motivates **Theorem 7** If $a, b, c \in A$ satisfy (0.6) then there is implication

6.2
$$ac - 1 \in A(ac - 1)^2 \iff ba - 1 \in A(ba - 1)^2$$

and

6.3
$$ac - 1 \in (ac - 1)^2 A \iff ba - 1 \in (ba - 1)^2 A$$
.

Proof. We argue, for forward implication in (6.2),

$$ac - 1 = c'(ac - 1)^2 \Longrightarrow a(ba - 1) = c'(ac - 1)^2 a = c'a(ba - 1)^2$$

 $\Longrightarrow ba(ba - 1) = bc'a(ba - 1)^2 \implies ba - 1 = (bc'a - 1)(ba - 1)^2 \bullet$

More generally $a \in A$ is Drazin invertible if some power a^k has a group inverse. To extend Theorem 7 we argue (cf [4] Lemma 2.1) that if (0.6) holds and $f \in \text{Poly}$ is a polynomial

$$f(ac)a = af(ba) :$$

note that (6.4) is clear for constants and the coordinate, and transfers to sums and products of polynomials. Now if $k \in \mathbb{N}$ we can argue, extending Theorem 2.2 of [4],

$$(ac-1)^k = c'(ac-1)^{k+1} \Longrightarrow a(ba-1)^k = (ac-1)^k a = c'a(ba-1)^{k+1}$$

giving

$$(ba-1)^k = ba(ba-1)^k - (ba-1)^{k+1} = (bc'a-1)(ba-1)^{k+1}$$
.

7. Spectral theory

If A is a real or a complex linear algebra (or category) then (1.3) immediately implies, for arbitrary non zero scalar λ ,

7.1
$$ac - \lambda \in A_{left}^{-1} \Longrightarrow ba - \lambda \in A_{left}^{-1}$$
.

and similarly (2.1) implies

7.2
$$ac - \lambda \in A_{left}^o \Longrightarrow ba - \lambda \in A_{left}^o$$
.

If we now define the spectrum of $a \in A$ by setting

7.3
$$\sigma(a) = \sigma^{left}(a) \cup \sigma^{right}(a) ,$$

where

7.4
$$\sigma^{left}(a) = \{ \lambda \in \mathbf{C} : a - \lambda \notin A_{left}^{-1} \} ; \ \sigma^{right}(a) = \{ \lambda \in \mathbf{C} : a - \lambda \notin A_{right}^{-1} \} ,$$

then Theorem 1 can be restated in terms of the spectrum:

Theorem 8 If (0.6) holds then

7.5
$$\sigma(ac) \setminus \{0\} = \sigma(ba) \setminus \{0\}.$$

Proof. (7.5) holds separately for the left and the right spectrum; inclusion one way follows from the implication (1.3) together with (7.1) and (7.2), and the logical syllogism of that argument converts this inclusion to equality \bullet

Theorem 8 has obvious analogues in which the spectrum is replaced by "point" and "approximate point" spectrum. From Theorem 8 it follows that, in the presence of (0.6), there is equality

7.6
$$\operatorname{acc} \sigma(ac) = \operatorname{acc} \sigma(ba)$$
,

where we write acc(K) for the accumulation points of $K \subseteq \mathbb{C}$. Considering the status of the point $0 \in \mathbb{C}$, it is now clear that if (0.6) holds then either neither or both ac and ba have a Koliha-Drazin inverse.

8. Local spectra

Theorem 1 and Theorem 2 have analogues in which invertibility or injectivity is replaced by local one-one-ness, also known as the "single valued extension property" [10],[13]. We shall say that $a \in A$ is locally one-one [7],[8] if there is implication

8.1
$$(a-z)f(z) \equiv 0 \Longrightarrow f(z) \equiv 0$$
,

whenever $f: U \to A$ is holomorphic on an open neighbourhood U of $0 \in \mathbb{C}$. Thus $a \in A$ has the single valued extension property at $\lambda \in \mathbb{C}$ if and only if ([7] Theorem 9) $a - \lambda \in A$ is locally one-one. The local analogue of Theorem 2 makes no distinction between zero and non zero points:

Theorem 9 If A is a Banach linear category and if (0.6) holds then, for arbitrary $\lambda \in \mathbb{C}$,

8.2
$$ac - \lambda$$
 locally one-one $\iff ba - \lambda$ locally one-one.

Proof. We can virtually copy out the proof of (2.1): writing $z: \mathbf{C} \to \mathbf{C}$ for the complex coordinate we have near $\lambda \in \mathbf{C}$

$$(ba-z)f(z)\equiv 0 \Longrightarrow (ac-z)af(z)\equiv a(ba-z)f(z)\equiv 0 \Longrightarrow af(z)\equiv 0 \Longrightarrow zf(z)\equiv baf(z)\equiv 0 \ .$$

When $\lambda = 0$ this argument works on a deleted neighbourhood •

Theorem 9 applied to the enlargement $\mathbf{Q}(A)$ gives [8] something very close to the analogue of Theorem 2 for "Bishop's property (β) ".

In the category of bounded operators we shall call $y \in Y$ a holomorphic range point of $a: X \to X$ if there exists $f: U \to X$ holomorphic on an open neighbourood of $0 \in \mathbb{C}$ for which

$$(a-z)f(z) \equiv y ;$$

the set $a^{\omega}(X)$ of its holomorphic range points is called the *transfinite range* or "coeur analytique" of $a: X \to X$. With this notation the intersection $a^{\omega}(X) \cap a^{-1}(0)$, known [7],[8] as the *holomorphic kernel*, vanishes if and only if a is locally one one. Now we can replace the ranges of ca-1 and ab-1 in (4.1) by their holomorphic ranges; similarly we can replace the null spaces in (2.7) by holomorphic kernels.

References

- Bruce Barnes, Common properties of the linear operators RS and SR, Proc. Amer. Math. Soc. 126 (1998) 1055-1061.
- Gustavo Corach and Alejandra Maestripieri, Polar decomposition of oblique projections, Linear Alg. Appl. 433 (2010) 511-519.
- 3. Raul Curto and Martin Mathieu, Spectrally bounded inner derivations, Proc. Amer. Math. Soc. 123 (1995) 2431-2434.
- 4. Dragana Cvetkovic-Ilic and Robin Harte, On Jacobson's lemma and Drazin invertibility, Appl. Math. Letters 23 (2010) 417-420.
- 5. Robin Harte, Invertibility and singularity for bounded linear operators, Dekker 1988.
- 6. Robin Harte, On spectral boundedness, Jour. Korean Math. Soc. 40 (2003) 307-317.
- Robin Harte, On local spectral theory, Operator Theory: Adv. Appl. 187 (2008) 175-183.
- 8. Robin Harte, On local spectral theory II, Funct. Anal. Approx. Comp. 2 (2010) 67-71.
- 9. Robert Hartwig, More on the Souriau-Frame algorithm, SIAM Jour. Appl. Math. 31 (1976) 42-46.
- 10. Kjeld Laursen and Michael Neumann, Introduction to local spectral theory, Clarendon Press 2000.
- 11. Xavier Mary, On the converse of a theorem of Harte and Mbekhta: Erratum to "On generalized inverses in C* algebras [Studia Math. 103 (1992) 71-77]. Studia Math. 184 (2008) 149-151.
- 12. Gerard Murphy, The index group, the exponential spectrum, and some spectral containment theorems, Proc. Royal Irish Acad. **92A** (1992) 229-238.
- Vladimir Müller, Spectral theory of linear operators and spectral systems, Second edition, Birkhäuser 2007.
- 14. Christoph Schmoeger, On the operator equations $ABA = A^2$ and $BAB = B^2$, Publ. Inst. Math. Beograd. (N.S.) **78(92)** (2005) 127-133.
- 15. Christoph Schmoeger, Common spectral properties of linear operators such that $ABA = A^2$ and $BAB = B^2$, Publ. Inst. Math. Beograd. (N.S.) **79(93)** (2006) 109-114.
- 16. Ivan Viday, On idempotent operators in a Hilbert space, Publ. Inst. Math. (Beograd) 4 (1964) 157-163