INJECTIVE ENVELOPES AND LOCAL MULTIPLIER ALGEBRAS OF SOME SPATIAL CONTINUOUS TRACE C*-ALGEBRAS

MARTÍN ARGERAMI, DOUGLAS FARENICK, AND PEDRO MASSEY

ABSTRACT. A precise description of the injective envelope of a spatial continuous trace C*-algebra A over a Stonean space Δ is given. The description is based on the notion of a weakly continuous Hilbert bundle, which we show herein to be a Kaplansky–Hilbert module over the abelian AW*-algebra $C(\Delta)$. We then use the description of the injective envelope of A to study the first- and second-order local multiplier algebras of A. In particular, we show that the second-order local multiplier algebra of A is precisely the injective envelope of A.

Introduction

A commonly used technique in the theory of operators algebras is to study a given C^* -algebra A by one or more of its enveloping algebras. Well known examples of such enveloping algebras are the enveloping von Neumann algebra A^{**} and the multiplier algebra M(A). In this paper we consider two others: the local multiplier algebra $M_{loc}(A)$ and the injective envelope I(A), both of which have received considerable study and application in recent years (see, for example, [1, 6, 7, 9, 11, 19, 21, 22]).

The C*-algebras $M_{loc}(A)$ and I(A) are difficult to determine precisely, even for fairly rudimentary types of C*-algebras A. For instance, if we denote by $C_0(T)$ an abelian C*-algebra and by K(H) the ideal of compact operators over H, their local multiplier algebra and injective envelope have been readily computed; but the injective envelope of $C_0(T) \otimes K(H)$ is much more difficult to describe: see [15] for an abstract description and [3, 4] for a somewhat more concrete one.

Our first goal in the present paper is to make a further contribution to the issue of the determination of I(A) and $M_{loc}(A)$ from A by considering continuous trace C*-algebras studied by Fell [10] that arise from continuous Hilbert bundles. The class of such algebras contains in particular all C*-algebras of the form $C_0(T) \otimes K(H)$, which we studied in [4]. Because the centres of I(A) and $M_{loc}(A)$ are AW*-algebras, and thus have Stonean maximal ideal spaces, we restrict ourselves in this paper to locally compact Hausdorff spaces T that are Stonean. In so doing, we establish an important first step toward a complete analysis, in the case of arbitrary T, of the C*-algebras I(A), $M_{loc}(A)$, and $M_{loc}(M_{loc}(A))$ for spatial continuous trace C*-algebras A with spectrum T. As the passage from general T to Stonean T involves a number of technicalities, the application of the main results herein to the case of arbitrary locally compact Hausdorff spaces T will be deferred to a subsequent article.

Our second goal is to introduce and study the notion of a weakly continuous Hilbert bundle $\Omega_{\rm wk}$ relative to a continuous Hilbert bundle Ω over a locally compact Hausdorff space T. It is natural to consider Ω as a C*-module over the abelian C*-algebra $C_0(T)$; if, moreover, T is a Stonean space Δ , we then show $\Omega_{\rm wk}$ carries the structure of a faithful AW*-module over $C(\Delta)$. In this latter situation, such C*-modules are called Kaplansky-Hilbert modules and they behaviour reminds of that of Hilbert space. We study the C*-modules Ω and $\Omega_{\rm wk}$, as well as certain C*-algebras of endomorphisms of these modules, using the beautiful machinery of Kaplansky [16] in his seminal work from the early 1950s. In particular, we prove that the C*-algebra $B(\Omega_{\rm wk})$ of bounded adjointable endomorphisms of $\Omega_{\rm wk}$ is the injective envelope and second-order local multiplier algebra of the C*-algebra $K(\Omega)$ of "compact" endomorphisms of Ω .

Assuming that $T = \Delta$, a Stonean space, and in postponing the precise definitions until the following section, the main results of this paper are summarised thusly:

• Ω_{wk} is a Kaplansky–Hilbert module that contains Ω as a C*-submodule such that $\Omega^{\perp} = \{0\}$;

This work is supported in part by the NSERC Discovery Grant Program (Canada) and CONICET (Argentina).

- $B(\Omega_{\rm wk})$ is the injective envelope of both $K(\Omega)$ and Fell's continuous trace C*-algebra A induced by the bundle Ω ;
- $B(\Omega_{wk})$ is the second-order local multiplier algebra of both $K(\Omega)$ and Fell's algebra A;
- a decomposition of Ω_{wk} into homogeneous submodules leads to a corresponding decomposition of (the generally non-AW*) algebra $M_{\text{loc}}(A)$ but not to a decomposition of A;
- the equality $M_{loc}(M_{loc}(A)) = I(A)$ holds for certain type I non-separable C*-algebras, generalizing a result of Somerset [21]

1. Preliminaries

If T is a locally compact Hausdorff space and $\{H_t\}_{t\in T}$ is family of Hilbert spaces, a vector field on T with fibres H_t is a function $\nu: T \to \bigsqcup_t H_t$ in which $\nu(t) \in H_t$, for every $t \in T$. Such a vector field ν is said to be bounded if the function $t \mapsto \|\nu(t)\|$ is bounded.

Definition 1.1. A continuous Hilbert bundle [8] is a triple $(T, \{H_t\}_{t \in T}, \Omega)$, where Ω is a set of vector fields on T with fibres H_t such that:

- (I) Ω is a C(T)-module with the action $(f \cdot \omega)(t) = f(t)\omega(t)$;
- (II) for each $t_0 \in T$, $\{\omega(t_0) : \omega \in \Omega\} = H_{t_0}$;
- (III) the map $t \mapsto \|\omega(t)\|$ is continuous, for all $\omega \in \Omega$;
- (IV) Ω is closed under local uniform approximation—that is, if $\xi: T \to \bigsqcup_t H_t$ is any vector field such that for every $t_0 \in T$ and $\varepsilon > 0$ there is an open set $U \subset T$ containing t_0 and $a \omega \in \Omega$ with $\|\omega(t) \xi(t)\| < \varepsilon$ for all $t \in U$, then necessarily $\xi \in \Omega$.

Dixmier and Douady [8] show that (I), (II), and (IV) can be replaced by other axioms, such as those given by Fell [10], without altering the structure that arises. For example, in the presence of the other axioms, (II) is equivalent to " $\{\omega(t_0) : \omega \in \Omega\}$ is dense in H_{t_0} , for each $t_0 \in T$ "; in the presence of (IV), axiom (I) can be replaced by " Ω is a complex vector space".

We turn next to the notion of a weakly continuous Hilbert bundle. If $(T, \{H_t\}_{t\in T}, \Omega)$ is a continuous Hilbert bundle then, by the polarisation identity, the function $t \mapsto \langle \omega_1(t), \omega_2(t) \rangle$ is continuous for all $\omega_1, \omega_2 \in \Omega$. In defining $\langle \omega_1, \omega_2 \rangle$ to be the map $T \to \mathbb{C}$ given by $t \mapsto \langle \omega_1(t), \omega_2(t) \rangle$, one obtains a C(T)-valued inner product on Ω which gives Ω the structure of an inner product module over C(T).

Definition 1.2. A vector field $\nu: T \to \bigsqcup_t H_t$ is said to be weakly continuous with respect to the continuous Hilbert bundle $(T, \{H_t\}_{t \in T}, \Omega)$ if the function

$$t \longmapsto \langle \nu(t), \omega(t) \rangle$$

is continuous for all $\omega \in \Omega$. The set of all bounded weakly continuous vector fields with respect to a given Ω will be denoted by Ω_{wk} , that is

$$\Omega_{\mathrm{wk}} = \{\nu: T \to \bigsqcup_t H_t: \sup_t \|\nu(t)\| < \infty \quad \text{and ν is weakly continuous}\}.$$

We will call the quadruple $(T, \{H_t\}_{t \in T}, \Omega, \Omega_{wk})$ a weakly continuous Hilbert bundle over T.

We remark that Ω_{wk} is a C(T)-module under the pointwise module action, and that $\Omega \subseteq \Omega_{\mathrm{wk}}$ when T is compact (because then every continuous field on Ω is bounded). However, the function $t \mapsto \langle \nu_1(t), \nu_2(t) \rangle$ is generally not continuous for arbitrary $\nu_1, \nu_2 \in \Omega_{\mathrm{wk}}$. Thus, although Ω_{wk} is, algebraically, a module over $C_b(T)$, it is not in general an inner product module over $C_b(T)$. Nevertheless, if T has the right topology—namely that of a Stonean space—then we show (Theorem 2.6) that it is possible to endow a weakly continuous Hilbert bundle with the structure of a C*-module over the C*-algebra of continuous complex-valued functions on T.

The continuous trace C*-algebras we consider herein were first studied by Fell [10]. We now recall their definition.

Assume that $\{A_t\}_{t\in T}$ is a family of C*-algebras indexed by the locally compact Hausdorff topological space T. An operator field is a map $a: T \to \bigsqcup_t A_t$ such that $a(t) \in A_t$, for each $t \in T$.

Definition 1.3. Let $(T, \{H_t\}_{t \in T}, \Omega)$ be a continuous Hilbert bundle. An operator field $a: T \to \bigsqcup_{t \in T} K(H_t)$ is:

(i) almost finite-dimensional (with respect to Ω) if for each $t_0 \in T$ and $\varepsilon > 0$ there exist an open set $U \subset T$ containing t_0 and $\omega_1, \ldots, \omega_n \in \Omega$ such that

- (a) $\omega_1(t), \ldots, \omega_n(t)$ are linearly independent for every $t \in U$, and
- (b) $||p_t a(t) p_t a(t)|| < \varepsilon$ for all $t \in U$, where $p_t \in B(H_t)$ is the projection with range Span $\{\omega_i(t): 1 \leq j \leq n\};$
- (ii) weakly continuous (with respect to Ω) if the complex-valued function

$$t \longmapsto \langle a(t)\omega_1(t), \omega_2(t) \rangle$$

is continuous for every $\omega_1, \omega_2 \in \Omega$.

Definition 1.4. ([10]) Let $(T, \{H_t\}_{t \in T}, \Omega)$ be a continuous Hilbert bundle. The Fell algebra of the Hilbert bundle $(T, \{H_t\}_{t \in T}, \Omega)$, denoted by $A = A(T, \{H_t\}_{t \in T}, \Omega)$, is the set of all weakly continuous, almost finite-dimensional operator fields $a: T \to \bigsqcup_{t \in T} K(H_t)$ for which $t \mapsto ||a(t)||$ is $continuous\ and\ vanishes\ at\ infinity,\ endowed\ with\ pointwise\ operations\ and\ norm$

$$||a|| = \max_{t \in T} ||a(t)||, \quad a \in A.$$

We shall make repeated use of the following fact about the Fell C*-algebras: if we let A be $A = A(T, \{H_t\}_{t \in T}, \Omega)$, for some continuous Hilbert bundle $(T, \{H_t\}_{t \in T}, \Omega)$, then A is a continuous trace C*-algebra with spectrum $\hat{A} \simeq T$ [10, Theorems 4.4, 4.5].

2. An AW*-module Structure for Ω_{wk}

Assume henceforth that $T = \Delta$ is a Stonean space; that is, Δ is Hausdorff, compact, and extremely disconnected. The abelian C*-algebra $C(\Delta)$ is an AW*-algebra and so one may ask whether the C*-modules Ω and Ω_{wk} are AW*-modules in the sense of Kaplansky [16]. We shall show that this is indeed true for the module $\Omega_{\rm wk}$. As a consequence of this last fact we shall get that the C*-algebra $B(\Omega_{wk})$ of bounded adjointable endomorphisms of Ω_{wk} is an AW*-algebra of

The following lemmas are needed to describe the $C(\Delta)$ -Hilbert module structure of $\Omega_{\rm wk}$.

Lemma 2.1. Let $f: \Delta \to \mathbb{R}$ be a lower semicontinuous function such that there exist $g \in C(\Delta)$ and a meagre set $M \subset \Delta$ with f(s) = g(s) for all $s \in \Delta \setminus M$. Then

$$\sup_{s \in \Delta} g(s) = \sup_{s \in \Delta \setminus M} f(s) = \sup_{s \in \Delta} f(s)$$

 $\sup_{s \in \Delta} g(s) = \sup_{s \in \Delta \setminus M} f(s) = \sup_{s \in \Delta} f(s).$ Proof. Let $\rho = \sup_{s \in \Delta \setminus M} f(s) = \sup_{s \in \Delta \setminus M} g(s) \le \sup_{s \in \Delta} g(s)$; then, $g(s) \le \rho$ for all $s \in \Delta \setminus M$. Because

 Δ is a Baire space, $\overline{\Delta \setminus M} = \Delta$; thus, by the continuity of $g, g(s) \leq \rho$ for every $s \in \Delta$. A similar argument shows that $f(s) \leq \rho$, for all $s \in \Delta$.

Lemma 2.2. Assume that $(\Delta, \{H_s\}_{s \in \Delta}, \Omega)$ is a continuous Hilbert bundle and $\nu \in \Omega_{wk}$. Then

- (i) the function $s \mapsto \|\nu(s)\|^2$ is lower semicontinuous; (ii) there is a meagre subset $M \subset \Delta$ and a continuous function $h : \Delta \to \mathbb{R}_+$ such that

 - (a) $h(s) = \|\nu(s)\|^2$ for all $s \in \Delta \setminus M$, and (b) $\|h\| = \sup_{s \in \Delta \setminus M} \|\nu(s)\|^2 = \sup_{s \in \Delta} \|\nu(s)\|^2$.

Proof. Let $r \in \mathbb{R}$ be fixed and consider $U_r = \{s \in \Delta : r < ||\nu(s)||^2\}$. We aim to show that U_r is open. Choose $s_0 \in U_r$. Thus, $r < ||\nu(s_0)||^2$. By Parseval's formula, there are orthonormal

vectors
$$\xi_1, \ldots, \xi_n \in H_{s_0}$$
 such that $r < \sum_{j=1}^n |\langle \nu(s_0), \xi_j \rangle|^2 \le ||\nu(s_0)||^2$. Choose any $\mu_1, \ldots, \mu_n \in \Omega$

such that $\mu_j(s_0) = \xi_j$, for each j. Because ξ_1, \ldots, ξ_n are orthogonal, $\mu_1(s), \ldots, \mu_n(s)$ are linearly independent in an open neighbourhood of s_0 . Hence, by [10, Lemma 4.2], there is an open set Vcontaining s_0 and vector fields $\omega_1, \ldots, \omega_n \in \Omega$ such that $\omega_1(s), \ldots, \omega_n(s)$ are orthonormal for all $s \in V$, and $\omega_j(s_0) = \xi_j$ for each j. The function

$$g(s) = \sum_{j=1}^{n} |\langle \nu(s), \omega_j(s) \rangle|^2$$

on Δ is continuous and satisfies $g(s) \leq \|\nu(s)\|^2$, for every $s \in V$, and $r < g(s_0)$. Therefore, by the continuity of g, there is an open set $W \subset V$ containing s_0 such that $r < g(s) \le ||\nu(s)||^2$ for all $s \in W$. This proves that U_r contains an open set around each of its points. That is, U_r is open.

Because every bounded nonnegative lower semicontinuous function on a Stonean space Δ agrees with a nonnegative continuous function off a meagre set M [23, Proposition III.1.7], the function $h \in C(\Delta)$ as in (ii) exists and satisfies $h(s) = \|\nu(s)\|^2$ for $s \in \Delta \setminus M$.

The last statement follows from Lemma 2.1.

Let $(\Delta, \{H_t\}_{t\in\Delta}, \Omega, \Omega_{wk})$ be a weakly continuous Hilbert bundle over Δ . Given $\nu \in \Omega_{wk}$, the function h that arises in Lemma 2.2 will be denoted by $\langle \nu, \nu \rangle$. There is no ambiguity in so doing because if $h_1, h_2 \in C(\Delta)$ and if $h_1(s) = h_2(s)$ for all $s \notin (M_1 \cup M_2)$ for some meagre subsets M_1 and M_2 , then h_1 and h_2 agree on Δ . (If not, then by continuity, h_1 and h_2 would differ on an open set U; but $\emptyset \neq U \subset M_1 \cup M_2$ is in contradiction to the fact that no meagre set in a Baire space can contain a nonempty open set.)

Now use the polarisation identity to define $\langle \nu_1, \nu_2 \rangle \in C(\Delta)$, for any pair $\nu_1, \nu_2 \in \Omega_{\rm wk}$. This gives to $\Omega_{\rm wk}$ the structure of pre-inner product module over $C(\Delta)$ whereby for each $\nu_1, \nu_2 \in \Omega_{\rm wk}$ there is a meagre subset $M \subset \Delta$ such that the continuous function $\langle \nu_1, \nu_2 \rangle$ satisfies

$$\langle \nu_1, \nu_2 \rangle(s) = \langle \nu_1(s), \nu_2(s) \rangle, \quad \forall s \in \Delta \setminus M.$$

In particular, if $\nu \in \Omega_{wk}$ and $\omega \in \Omega$, then

$$\langle \nu, \omega \rangle(s) = \langle \nu(s), \omega(s) \rangle, \quad \forall s \in \Delta.$$

In fact, Ω_{wk} is an inner product module over $C(\Delta)$, for if $\nu \in \Omega$ satisfies $\langle \nu, \nu \rangle = 0$, then Lemma 2.2 yields $\|\nu(s)\|^2 = 0$ for all $s \in \Delta$. Therefore,

$$\|\nu\| = \|\langle \nu, \nu \rangle\|^{1/2}, \quad \nu \in \Omega_{\text{wk}},$$

defines a norm on Ω_{wk} , where

(1)
$$\|\nu\|^2 = \sup_{s \in \Delta} \langle \nu(s), \nu(s) \rangle = \|\langle \nu, \nu \rangle\|.$$

Recall that given a C*-algebra B, a Hilbert C*-module over B is a left B-module E together with a B-valued definite sequilinear map \langle , \rangle such that E is complete with the norm $\|\nu\| = \|\langle \nu, \nu \rangle\|^{1/2}$ (see [17] for a detailed account on Hilbert modules).

Note that if $\nu \in \Omega_{\text{wk}}$, then $|\nu|(s) := \langle \nu, \nu \rangle^{1/2}(s) \geq ||\nu(s)||$ for $s \in \Delta$ and that $|\nu|(s) = ||\nu(s)||$ if $s \in (\Delta \setminus M)$ for some meagre set $M \subset \Delta$ (Lemma 2.2). These facts will be used repeatedly from now on.

Proposition 2.3. Ω_{wk} is a C^* -module over $C(\Delta)$ and Ω is a C^* -submodule of Ω_{wk} .

Proof. The only Hilbert C*-module axiom that is not obviously satisfied by Ω_{wk} is the axiom of completeness. Let $\{\nu_i\}_{i\in\mathbb{N}}$ be a Cauchy sequence in Ω_{wk} . By the equality (1), $\{\nu_i(s)\}_{i\in\mathbb{N}}$ is a Cauchy sequence in H_s for every $s\in\Delta$. Let $\nu(s)\in H_s$ denote the limit of this sequence so that $\nu:\Delta\to \bigsqcup_{s\in\Delta} H_s$, whereby $s\mapsto \nu(s)$, is a vector field.

Choose $\omega \in \Omega$ and consider the function $g_{i,\omega} \in C(\Delta)$ given by $g_{i,\omega}(s) = \langle \omega(s), \nu_i(s) \rangle$. Let $\varepsilon > 0$. Then there is $N_{\varepsilon} \in \mathbb{N}$ such that $\|\nu_i - \nu_j\| < \varepsilon$, for all $i, j \geq N_{\varepsilon}$. Therefore, the Cauchy-Schwarz inequality yields

$$\sup_{s \in \Delta} |g_{i,\omega}(s) - g_{j,\omega}(s)| < \varepsilon ||\omega||, \quad \forall i, j \ge N_{\varepsilon}.$$

Thus, the sequence $\{g_{i,\omega}\}_i$ is Cauchy in $C(\Delta)$; let $g_{\omega} \in C(\Delta)$ denote its limit. Observe that $g_{\omega}(s) = \lim_i \langle \nu_i(s), \omega(s) \rangle = \langle \nu(s), \omega(s) \rangle$, for all $s \in \Delta$. As the choice of $\omega \in \Omega$ is arbitrary, this shows that ν is weakly continuous. The Cauchy sequence $\{\nu_i\}_{i \in \mathbb{N}}$ is necessarily uniformly bounded by, say, $\rho > 0$, and then $\|\nu(s)\| \leq \rho$ for every $s \in \Delta$. That is, the function $s \to \|\nu(s)\|$ is bounded and so $\nu \in \Omega_{\text{wk}}$. Finally, if $i, j \geq N_{\varepsilon}$, then for any $s \in \Delta$ we have $\|\nu(s) - \nu_i(s)\| \leq \|\nu(s) - \nu_j(s)\| + \|\nu_j(s) - \nu_i(s)\| \leq \|\nu(s) - \nu_j(s)\| + \varepsilon$, and so letting $j \to \infty$ yields $\|\nu(s) - \nu_i(s)\| \leq \varepsilon$ for every $s \in \Delta$. That is, $\|\nu - \nu_i\| \to 0$, which proves that Ω_{wk} is complete.

For the case of Ω , let $\{\omega_n\}_{n\in\mathbb{N}}$ be a Cauchy sequence in Ω . For each $s\in \Delta$, $\{\omega_n(s)\}_{n\in\mathbb{N}}$ is a Cauchy sequence in H_s ; let $\omega(s)$ denote the limit. Since the limit is uniform, it is in particular locally uniform, and so $\omega\in\Omega$. Hence, Ω is complete.

Definition 2.4. A Hilbert C^* -module E over the C^* -algebra B is called a Kaplansky-Hilbert module if in addition B is an abelian AW^* -algebra and the following three properties hold [16, p. 842] (Kaplansky's original term for such a module was a faithful AW^* -module):

- (i) if $e_i \cdot \nu = 0$ for some family $\{e_i\}_i \subset B$ of pairwise-orthogonal projections and $\nu \in E$, then also $e \cdot \nu = 0$, where $e = \sup_i e_i$;
- (ii) if $\{e_i\}_i \subset B$ is a family of pairwise-orthogonal projections such that $1 = \sup_i e_i$, and if $\{\nu_i\}_i \subset E$ is a bounded family, then there is a $\nu \in E$ such that $e_i \cdot \nu = e_i \cdot \nu_i$ for all i;
- (iii) if $\nu \in E$, then $g \cdot \nu = 0$ for all $g \in B$ only if $\nu = 0$.

Remark 2.5. The element $\nu \in E$ obtained in the situation described in (ii) will sometimes be denoted as $\sum_i e_i \nu_i$. It should be emphasized that this is not a pointwise sum.

Theorem 2.6. Ω_{wk} is a Kaplansky-Hilbert module over $C(\Delta)$.

Proof. For property (i), assume that $\nu \in \Omega_{\text{wk}}$ and $\{e_i\}_i \subset C(\Delta)$ is a family of pairwise-orthogonal projections with supremum $e \in C(\Delta)$ for which $e_i \cdot \nu = 0$ for all i. Because projections in $C(\Delta)$ are the characteristic functions of clopen sets, there are pairwise-disjoint clopen sets $U_i \subset \Delta$ such that $e_i = \chi_{U_i}$. Thus, for each i, using Lemma 2.2,

$$0 = \|e_i \cdot \nu\|^2 = \max_{s \in \Delta} \langle e_i \cdot \nu, e_i \cdot \nu \rangle(s) = \sup_{s \in \Delta} \langle e_i(s)\nu(s), e_i(s)\nu(s) \rangle$$
$$= \max_{s \in \Delta} e_i(s) \left[\langle \nu, \nu \rangle(s) \right] = \max_{s \in U_i} \langle \nu, \nu \rangle(s) ,$$

and so $\langle \nu, \nu \rangle(s) = 0$ for every $s \in U_i$. Let $U = \bigcup_i U_i$. The set \overline{U} is clopen and $\chi_{\overline{U}} = \sup_i e_i = e$ [5, §8]. As $\langle \nu, \nu \rangle$ is a continuous function that vanishes on U, $\langle \nu, \nu \rangle$ also vanishes on \overline{U} . Hence,

$$\|e\cdot\nu\|^2 \ = \ \max_{s\in\Delta} \, e(s) \, [\langle \nu,\nu\rangle(s)] \ = \ \max_{s\in\overline{U}} \, \langle \nu,\nu\rangle(s) \ = \ 0 \, ,$$

which yields property (i).

For the proof of property (ii), assume that $\{e_i\}_i \subset C(\Delta)$ is a family of pairwise-orthogonal projections such that $1 = \sup_i e_i$ and that $\{\nu_i\}_i \subset \Omega_{\mathrm{wk}}$ is a family such that $K = \sup \|\nu_i\| < \infty$; we aim to prove that there is a $\nu \in \Omega_{\mathrm{wk}}$ such that $e_i \cdot \nu = e_i \cdot \nu_i$ for all i. As before, assume that $e_i = \chi_{U_i}$ and $U = \bigcup_i U_i$. Then $1 = \sup_i e_i$ implies that $\overline{U} = \Delta$.

For each $\omega \in \Omega$, consider the unique function $f_{\omega} \in C(\Delta)$ such that $e_i f_{\omega} = e_i \langle \omega, \nu_i \rangle$ for all i (its existence guaranteed by the fact that Δ is the Stone-Čech compactification of U). Note that for $s \in U_i$ we have that $f_{\omega}(s) = \langle \omega(s), \nu_i(s) \rangle$. Hence, $|f_{\omega}(s)| \leq K \|\omega(s)\|$ for $s \in U$; the same inequality holds for all $s \in \Delta$ because $\overline{U} = \Delta$ and both sides of the inequality are continuous functions of s. Moreover, if $\omega_1, \omega_2 \in \Omega$ and $\alpha \in \mathbb{C}$ then, for $s \in U$ we get that $f_{\alpha \omega_1 + \omega_2}(s) = \alpha f_{\omega_1}(s) + f_{\omega_2}(s)$ and, therefore, that $f_{\alpha \omega_1 + \omega_2} = \alpha f_{\omega_1} + f_{\omega_2}$. Thus, for each $s \in \Delta$ the function $\omega(s) \mapsto f_{\omega}(s)$ is a bounded and linear functional on H_s . Let $\nu(s) \in H_s$ be the representing vector for this functional, yielding a vector field $\nu: \Delta \to \bigsqcup_{s \in \Delta} H_s$, $s \mapsto \nu(s)$. Since $\langle \nu(s), \omega(s) \rangle = \overline{f_{\omega}(s)}$, for every $\omega \in \Omega$, ν is weakly continuous. It remains to show that ν is a bounded vector field. If $s \in U$,

$$\|\nu(s)\| \ = \ \sup_{\omega \in \Omega, \ \|\omega(s)\|=1} |\langle \omega(s), \nu(s) \rangle| \ = \ \sup_{\omega \in \Omega, \ \|\omega(s)\|=1} |f_\omega(s)| \le \sup_i \|\nu_i\| \ = K \,,$$

which shows that $\|\nu(s)\|$ is uniformly bounded on U. Thus, by Lemma 2.1, the lower semicontinuous function $s \mapsto \|\nu(s)\|^2$ is bounded on Δ , since $\Delta \setminus U$ is nowhere dense. Therefore, $\nu \in \Omega_{\text{wk}}$.

Now we show that $e_i \cdot \nu = e_i \cdot \nu_i$, for all i. Fix i and $s \in U_i$ and consider $\omega \in \Omega$. Then,

$$\begin{split} \langle \omega(s),\, e_i(s)\, \nu(s) \rangle &= \langle \omega(s),\, \nu(s) \rangle \\ &= f_\omega(s) = \langle \omega(s), \nu_i(s) \rangle \\ &= \langle \omega(s), e_i(s)\, \nu_i(s) \rangle \,. \end{split}$$

Since $(e_i \cdot \nu)(s) = 0 = (e_i \cdot \nu_i)(s)$ for $s \in \Delta \setminus U_i$ we conclude that $e_i \cdot \nu = e_i \cdot \nu_i$.

For the proof of property (iii), assume that $\nu \in \Omega_{\text{wk}}$ satisfies $g \cdot \nu = 0$ for all $g \in C(\Delta)$. Then, in particular, $\langle \nu, \nu \rangle \cdot \nu = 0$. Hence, from $\|\nu\| = \|\langle \nu, \nu \rangle\|^{1/2}$ we conclude $\nu = 0$, which proves property (iii).

3. Endomorphisms of Ω and Ω_{wk}

Throughout this section A will denote the Fell C*-algebra of the continuous Hilbert bundle $(\Delta, \{H_s\}_{s \in \Delta}, \Omega)$, as described in Definition 1.4, where Δ is Stonean. Let $B(\Omega)$ and $B(\Omega_{wk})$ denote, respectively, the C*-algebras of adjointable $C(\Delta)$ -endomorphisms of Ω and Ω_{wk} . Since, by Theorem 2.6, Ω_{wk} is a Kaplansky-Hilbert AW*-module over $C(\Delta)$, $B(\Omega_{wk})$ coincides with the set of all $C(\Delta)$ -endomorphisms of Ω_{wk} [16, Theorem 6] and is a type I AW*-algebra with centre $C(\Delta)$ [16, Theorem 7].

In the case where Ω is given by the trivial Hilbert bundle $(\Delta, \{H\}_{s \in \Delta}, C(\Delta, H))$, where H is a fixed Hilbert space, Hamana [15] proved that $B(\Omega_{wk}) \cong C(\Delta) \otimes B(H)$, the monotone complete tensor product $C(\Delta)$ and B(H).

For each $\nu_1, \nu_2 \in \Omega_{wk}$, consider the endomorphism Θ_{ν_1, ν_2} on Ω_{wk} defined by

$$\Theta_{\nu_1,\nu_2}(\nu) = \langle \nu, \nu_2 \rangle \cdot \nu_1, \quad \nu \in \Omega_{wk}.$$

Let

$$F(\Omega) = \left\{ \sum_{j=1}^n \Theta_{\omega_j, \omega_j'} \, : \, \omega_j, \omega_j' \in \Omega \right\}, \quad F(\Omega_{\text{wk}}) = \left\{ \sum_{j=1}^n \Theta_{\nu_j, \nu_j'} \, : \, \nu_j, \nu_j' \in \Omega_{\text{wk}} \right\}.$$

If $\omega_1, \omega_2 \in \Omega$, then $\Theta_{\omega_1,\omega_2}\omega \in \Omega$ for all $\omega \in \Omega$, and so $F(\Omega) \subset B(\Omega)$. In fact, $F(\Omega)$ and $F(\Omega_{wk})$ are algebraic ideals in $B(\Omega)$ and $B(\Omega_{wk})$ respectively. The norm-closures of these algebraic ideals, namely $K(\Omega)$ and $K(\Omega_{wk})$, are essential ideals in each of $B(\Omega)$ and $B(\Omega_{wk})$ —called ideals of compact endomorphisms—and the multiplier algebras of $K(\Omega)$ and $K(\Omega_{wk})$ are, respectively, $B(\Omega)$ and $B(\Omega_{wk})$ (see [17]).

When referring to rank-1 operators x acting on a Hilbert space H, we will use the notation $x = \xi \otimes \eta$ for such an operator—the action on $\gamma \in H$ given by $\gamma \mapsto \langle \gamma, \eta \rangle \xi$ —and we reserve the notation $\Theta_{\xi,\eta}$ for "rank-1" operators acting on a Hilbert module.

For any C*-algebra B, we denote the injective envelope [13], [18, Chapter 15] of B by I(B) (and we consider I(B) as a C*-algebra rather than an operator system).

The main result of the present section is the following theorem.

Theorem 3.1. There exist C^* -algebra embeddings such that

(2)
$$K(\Omega) \subseteq A \subseteq B(\Omega) \subseteq B(\Omega_{wk}) = I(K(\Omega)).$$

In particular, $I(K(\Omega)) = I(A) = I(B(\Omega)) = B(\Omega_{wk})$.

The proof of Theorem 3.1 and a description of the inclusions in (2) begin with the following set of results.

Lemma 3.2. For every $a \in A$ and $\omega \in \Omega$, the vector field $a \cdot \omega$ defined by $a \cdot \omega(s) = a(s)\omega(s)$ is an element of Ω .

Proof. Let $a \in A$. Then $a^*a \in A_+$ and since all fields in A are weakly continuous, for every $\omega \in \Omega$ the map $s \mapsto \|a(s)\omega(s)\| = \langle a^*a \cdot \omega(s), \omega(s) \rangle^{1/2}$ is continuous.

Suppose $s_0 \in \Delta$ and $\varepsilon > 0$. Because $H_{s_0} = \{\mu(s_0) : \mu \in \Omega\}$, there is a $\mu \in \Omega$ such that $a(s_0)\omega(s_0) = \mu(s_0)$. Since

$$||a \cdot \omega(s) - \mu(s)||^2 = ||a(s)\omega(s)||^2 + ||\mu(s)||^2 - 2\operatorname{Re}\langle a(s)\omega(s), \mu(s)\rangle$$

is continuous on Δ and vanishes at s_0 , there is an open set $U \subset \Delta$ containing s_0 such that $||a \cdot \omega(s) - \mu(s)|| < \varepsilon$ for all $s \in U$. As Ω is closed under local uniform approximation, this proves that $a \cdot \omega \in \Omega$.

Proposition 3.3. The map $\varrho: A \to B(\Omega)$ given by $\varrho(a)\omega = a \cdot \omega$, for $a \in A$ and $\omega \in \Omega$ is an isometric C^* -homomorphism. Furthermore, $K(\Omega) \subseteq \varrho(A) \subset B(\Omega)$ as C^* -algebras.

Proof. It is clear that ϱ is a C*-algebra homomorphism, and so we only need to verify that it is one-to-one. To this end, assume that $\varrho(a)=0$. Thus, $a(s)\omega(s)=0$ for every $\omega\in\Omega$ and every $s\in\Delta$. Because $H_s=\{\omega(s):\omega\in\Omega\}$, this implies that a(s)=0 for all $s\in\Delta$, and so a=0.

To show $K(\Omega) \subseteq \varrho(A) \subset B(\Omega)$ as C*-algebras, consider $\Theta_{\omega_1,\omega_2}$ with $\omega_1,\omega_2 \in \Omega$. For any $\eta_1,\eta_2 \in \Omega$, the map

$$\langle \Theta_{\omega_1,\omega_2} \cdot \eta_1, \eta_2 \rangle(s) = \langle \eta_1, \omega_2 \rangle(s) \, \langle \omega_1, \eta_2 \rangle(s) = \langle \eta_1(s), \omega_2(s) \rangle \, \langle \omega_1(s), \eta_2(s) \rangle$$

is continuous. So $\Theta_{\omega_1,\omega_2}$ is finite dimensional and weakly continuous, which shows that $\Theta_{\omega_1,\omega_2} \in A$ and $K(\Omega) \subseteq \varrho(A)$.

Lemma 3.4. $\Omega^{\perp} = \{0\}$, with respect to the inclusion $\Omega \subset \Omega_{wk}$.

Proof. Let $\nu \in \Omega_{\text{wk}}$ be such that $\langle \nu, \omega \rangle = 0$, for every $\omega \in \Omega$. That is, for every $\omega \in \Omega$ and for every $s \in \Delta$, $\langle \nu(s), \omega(s) \rangle = 0$. If $\nu \neq 0$, there exists $s_0 \in \Delta$ such that $\nu(s_0) \neq 0$. By axiom (II) in Definition 1.1, there exists $\omega \in \Omega$ such that $\omega(s_0) = \nu(s_0)$, in contradiction to $\langle \nu(s_0), \omega(s_0) \rangle = 0$.

Lemma 3.5. If $t_0 \in \Delta$ and $\xi \in H_{t_0}$, then there exists $\omega \in \Omega$ such that $\omega(t_0) = \xi$ and $\|\omega\| = \|\xi\|$.

Proof. The case $\xi = 0$ is trivial. So assume that $\|\xi\| > 0$. Let $\omega' \in \Omega$ with $\omega'(t_0) = \xi$. Fix a clopen neighbourhood N of t_0 such that $N \subset \{t \in T : \|\omega'(t)\| \ge \|\omega'(t_0)\|/2\}$. Let $h'(\cdot) = \|\xi\| \cdot \|\omega'(\cdot)\|^{-1} \in C(N)$; then h' extends to a continuous function $h \in C(\Delta)$ with $h|_{\Delta \setminus N} = 0$. It is now straightforward to show that $\omega = h \cdot \omega' \in \Omega$ has the desired properties.

Proposition 3.6. There exists an isometric homomorphism $\vartheta : B(\Omega) \to B(\Omega_{wk})$ such that for $a \in A, \ \nu \in \Omega_{wk}$,

(3)
$$(\vartheta(\varrho(a))\nu)(s) = a(s)\nu(s), \quad s \in \Delta.$$

Proof. Assume that $b \in B(\Omega)$ and $\omega \in \Omega$, $s \in \Delta$. By Lemma 3.5,

$$\begin{split} \|(b\,\omega)(s)\| &= \sup_{\xi\in H_s,\, \|\xi\|=1} |\langle (b\,\omega)(s),\xi\rangle| = \sup_{\eta\in\Omega,\, \|\eta\|=1} |\langle (b\,\omega)(s),\eta(s)\rangle| \\ &= \sup_{\eta\in\Omega,\, \|\eta\|=1} |\langle \omega(s),(b^*\eta)(s)\rangle| \\ &\leq \|\omega(s)\| \sup_{\eta\in\Omega,\, \|\eta\|=1} \|b^*\eta\| \leq \|\omega(s)\|\, \|b^*\| = \|\omega(s)\|\, \|b\|\,. \end{split}$$

Therefore, the function $\omega(s) \mapsto (b\,\omega)(s)$ is well defined and induces a bounded linear operator $b(s) \in B(H_s)$ such that $(b\,\omega)(s) = b(s)\,\omega(s)$, for $s \in \Delta$ and $\omega \in \Omega$ with $\sup_{s \in \Delta} \|b(s)\| \leq \|b\|$. Moreover,

$$\begin{split} \|b\| &= \sup_{\|\omega\| = 1} \ \|b \cdot \omega\| = \sup_{\|\omega\| = 1} \sup_{s} \ \|b \cdot \omega(s)\| = \sup_{\|\omega\| = 1} \sup_{s} \ \|b(s)\omega(s)\| \\ &\leq \sup_{\|\omega\| = 1} \sup_{s} \ \|b(s)\| \ \|\omega(s)\| \leq \sup_{s} \|b(s)\| \leq \|b\| \ , \end{split}$$

and so $\sup_{s\in\Delta} \|b(s)\| = \|b\|$. Suppose now that $\nu\in\Omega_{\mathrm{wk}}$ and $s\in\Delta$, and define a vector field $b\nu$ by $(b\nu)(s) = b(s)\nu(s)$. If $\eta\in\Omega$, then

$$\langle (b\nu)(s), \eta(s) \rangle = \langle \nu(s), b(s)^* \eta(s) \rangle = \langle \nu(s), (b^*\eta)(s) \rangle$$

is continuous, which shows that $b\nu$ is weakly continuous with respect to Ω . Since $b\nu$ is also uniformly bounded, we conclude that $b\nu \in \Omega_{\rm wk}$. It is straightforward to show that the map $\nu \mapsto b\nu$ is a bounded $C(\Delta)$ -endomorphism of $\Omega_{\rm wk}$ and hence it gives rise to an element of $B(\Omega_{\rm wk})$ denoted by $\vartheta(b)$. It is clear the ϑ is a C*-homomorphism. Since $\vartheta b|_{\Omega} = b, \, \vartheta b = 0$ implies b = 0 by Lemma 3.4, so ϑ is well-defined and one-to-one, and thus a C*-monomorphism. Finally, it is clear that (3) holds by construction.

One consequence of the proof of Proposition 3.6 is that for every $b \in B(\Omega)$ there exists an operator field $\{b(s)\}_{s\in\Delta}$ acting on the Hilbert bundle $\{H_s\}_{s\in\Delta}$ such that $(b\omega)(s) = b(s)\omega(s)$, for every $s \in \Delta$. This property, however, is not shared by all elements of $B(\Omega_{wk})$.

Lemma 3.7. If $z \in B(\Omega_{wk})$ and $\Theta_{\omega,\omega}z\Theta_{\mu,\mu}=0$ for all $\omega,\mu\in\Omega$, then z=0.

Proof. For any ξ , ω , $\mu \in \Omega$ we have that

$$0 = \Theta_{\omega,\omega} z \Theta_{\mu,\mu} \xi = \langle \xi, \mu \rangle \langle z\mu, \omega \rangle \omega.$$

Hence, we get that

$$0 = \langle \xi, \mu \rangle |\langle z\mu, \omega \rangle|^2 = \langle \xi, \mu \rangle |\langle \mu, z^*\omega \rangle|^2.$$

We are free to choose $\xi, \mu \in \Omega$. Fix s. If $z^*\omega(s) \neq 0$, choose μ with $\xi(s) = \mu(s) = z^*\omega(s)$ and let $\xi = \mu$. Then $z^*\omega(s) = 0$ and as $s \in \Delta$ is arbitrary, $z^*\omega = 0$ for every $\omega \in \Omega$. For any $\nu \in \Omega_{\rm wk}$

and every $\omega \in \Omega$, $\langle z\nu, \omega \rangle = \langle \nu, z^*\omega \rangle = 0$. By Lemma 3.4 we conclude that $z\nu = 0$ for $\nu \in \Omega_{\text{wk}}$ and hence z = 0.

Proof of Theorem 3.1. We consider the embeddings $A \xrightarrow{\varrho} B(\Omega)$ and $B(\Omega) \xrightarrow{\vartheta} B(\Omega_{wk})$ defined in Propositions 3.3 and 3.6. In this way, we get the inclusions in (2).

Because $B(\Omega_{\rm wk})$ is a type I AW*-algebra, it is injective [14, Proposition 5.2]. To show that $B(\Omega_{\rm wk})$ is the injective envelope $I(K(\Omega))$ of $K(\Omega)$, we need to show that the embedding $\vartheta \circ \varrho$ of A into $B(\Omega_{\rm wk})$ is rigid [18, Theorem 15.8]: that is, we aim to prove that if $\varphi : B(\Omega_{\rm wk}) \to B(\Omega_{\rm wk})$ is a unital completely positive linear map for which $\varphi|_{K(\Omega)} = \mathrm{id}_{K(\Omega)}$, then $\varphi = \mathrm{id}_{B(\Omega_{\rm wk})}$.

Let $\phi: B(\Omega_{wk}) \to B(\Omega_{wk})$ be such a ucp map with $\phi|_{K(\Omega)} = \mathrm{id}_{K(\Omega)}$. Suppose that $z \in B(\Omega_{wk})$ and $\omega, \mu \in \Omega$. Then $\Theta_{\omega,\omega}z\Theta_{\mu,\mu} = \Theta_{\langle z\mu,\omega\rangle\omega,\mu} \in K(\Omega)$. Because $K(\Omega)$ is in the multiplicative domain of ϕ , we have that $\phi(axb) = a\phi(x)b$ for all $x \in B(\Omega_{wk})$ and $a, b \in K(\Omega)$. This implies that

$$\Theta_{\omega,\omega}\phi(z)\Theta_{\mu,\mu}=\phi(\Theta_{\omega,\omega}z\Theta_{\mu,\mu})=\phi(\Theta_{\langle z\mu,\omega\rangle\omega,\mu})=\Theta_{\langle z\mu,\omega\rangle\omega,\mu}=\Theta_{\omega,\omega}z\Theta_{\mu,\mu},$$

and so $\Theta_{\omega,\omega}(z-\phi(z))\Theta_{\mu,\mu}=0$. Since ω,μ were arbitrary, Lemma 3.7 implies that $z-\phi(z)=0$ and so $\phi=\mathrm{id}_{B(\Omega_{\mathrm{wk}})}$.

We have shown above that the inclusion $K(\Omega) \subset B(\Omega_{wk})$ is rigid. Moreover, $K(\Omega)$ is an essential ideal of $B(\Omega)$ and $K(\Omega) \subset A \subset B(\Omega)$. Hence, $I(K(\Omega)) = I(A) = I(B(\Omega)) = B(\Omega_{wk})$. \square

We conclude this section with a remark about the ideal $K(\Omega_{wk})$ of $B(\Omega_{wk})$. In type I AW*-algebras, the ideal generated by the abelian projections has a prominent role. As it happens, $K(\Omega_{wk})$ is precisely this ideal.

Proposition 3.8. The C^* -algebra $K(\Omega_{wk})$ coincides with the ideal $J \subset B(\Omega_{wk})$ generated by the abelian projections of $B(\Omega_{wk})$. In particular, $K(\Omega_{wk})$ is a liminal C^* -algebra with Hausdorff spectrum.

Proof. By [16, Lemma 13], a projection $e \in B(\Omega_{wk})$ is abelian if and only if there exists $\nu \in \Omega_{wk}$ such that $|\nu|$ is a projection in $C(\Delta)$ and $e = \Theta_{\nu,\nu}$. Hence, $J \subseteq K(\Omega_{wk})$.

To show that $K(\Omega_{\text{wk}}) \subset J$, assume $\nu \in \Omega_{\text{wk}}$ is nonzero. Let $\varepsilon > 0$. We will show that there is an $x_{\varepsilon} \in J$ such that $\|\Theta_{\nu,\nu} - x_{\varepsilon}\| < \varepsilon$. Let $V \subset \Delta$ be the (clopen) closure of $\{s \in \Delta : |\nu|(s) < \varepsilon^{1/2}/2\}$, $U = \Delta \setminus V$ (also clopen) and let $g = (1/|\nu|) \chi_U \in C(\Delta)_+$. Then $g|\nu| = \chi_U$ and $\|\chi_{\Delta \setminus U}|\nu| \| < \varepsilon^{1/2}$. Let $\nu' = g \cdot \nu$ so that $|\nu'| = \chi_U$. Hence, $\Theta_{\nu',\nu'} \in J$ and $\Theta_{\nu',\nu'} = g^2 \cdot \Theta_{\nu,\nu}$. Let $x_{\varepsilon} = |\nu|^2 \cdot \Theta_{\nu',\nu'} \in J$. Then

$$x_{\varepsilon} = |\nu|^2 \cdot \Theta_{\nu',\nu'} = |\nu|^2 g^2 \Theta_{\nu,\nu} = \chi_U \Theta_{\nu,\nu},$$

and

$$\begin{split} \|x_{\varepsilon} - \Theta_{\nu,\nu}\| &= \|\chi_{\Delta \backslash U} \cdot \Theta_{\nu,\nu}\| = \sup_{\xi \in \Omega_{\text{wk}}, \ \|\xi\| = 1} \max_{s \in \Delta \backslash U} \langle \Theta_{\nu,\nu} \xi, \Theta_{\nu,\nu} \xi \rangle^{1/2}(s) \\ &= \sup_{\xi \in \Omega_{\text{wk}}, \ \|\xi\| = 1} \max_{s \in \Delta \backslash U} \left(\langle \xi, \nu \rangle^2(s) \, |\nu|^2(s) \right)^{1/2} \leq \max_{s \in \Delta \backslash U} \, |\nu|^2(s) < \varepsilon. \end{split}$$

As ε was arbitrary and J is closed, we conclude that $\Theta_{\nu,\nu} \in J$. The polarisation identity then shows that $\Theta_{\nu_1,\nu_2} \in J$ for all $\nu_1,\nu_2 \in \Omega_{\mathrm{wk}}$. Hence, $F(\Omega_{\mathrm{wk}}) \subset J$, and so $K(\Omega_{\mathrm{wk}}) \subseteq J$.

It remains to justify the last assertion in the statement. By the main result of [12], the ideal generated by the abelian projections in a type I AW*-algebra is liminal and has Hausdorff spectrum. Hence, this is true of $K(\Omega_{wk})$.

4. Multiplier and Local Multiplier Algebras

In the previous section we established the inclusions $K(\Omega) \subseteq A \subseteq B(\Omega) \subseteq B(\Omega_{wk})$, as C*-subalgebras, and we showed that $I(A) = B(\Omega_{wk})$. The present section refines these inclusions to incorporate multiplier algebras and local multiplier algebras.

Let C denote an arbitrary C*-algebra. By M(C) and $M_{loc}(C)$ we denote the multiplier algebra and the local multiplier algebra [2] of a C*-algebra C respectively. The second order local multiplier algebra of C is $M_{loc}(M_{loc}(C))$, the local multiplier algebra of $M_{loc}(C)$. By [11, Corollary 4.3], the local multiplier algebras (of all orders) of C are C*-subalgebras of the injective envelope I(C) of C. In particular, $C \subseteq M_{loc}(C) \subseteq M_{loc}(M_{loc}(C)) \subseteq I(C)$ as C*-subalgebras. By a well known theorem of Kasparov [2, Theorem 1.2.33], [17, Theorem 2.4], $M(K(\Omega)) = B(\Omega)$.

The following theorem is the main result of this section.

Theorem 4.1. With the notations from the previous sections, the equality $M_{loc}(A) = M_{loc}(K(\Omega))$ holds and the following inclusions (as C^* -subalgebras) occur:

(4)
$$M(A) \subseteq M(K(\Omega)) = B(\Omega) \subseteq M_{loc}(K(\Omega)) \subseteq M_{loc}(M_{loc}(K(\Omega))) = B(\Omega_{wk})$$
.
In particular, $M_{loc}(M_{loc}(A)) = I(A)$.

Ara and Mathieu have presented examples of Stonean spaces Δ and trivial Hilbert bundles Ω for which the inclusion $M_{\mathrm{loc}}(K(\Omega)) \subseteq M_{\mathrm{loc}}(M_{\mathrm{loc}}(K(\Omega)))$ in (4) is proper [3, Theorem 6.13]. As a consequence of Theorem 4.1 we see that this gap can not occur for higher local multiplier algebras, i.e. for all $k \geq 2$, $M_{\mathrm{loc}}^{k+1}(K(\Omega)) = M_{\mathrm{loc}}^k(K(\Omega))$ — where $M_{\mathrm{loc}}^{k+1}(K(\Omega)) = M_{\mathrm{loc}}(M_{\mathrm{loc}}^k(K(\Omega)))$ for $k \geq 1$.

The proof of Theorem 4.1 is achieved through a number of lemmas.

Lemma 4.2. The set

$$F = \{ \sum_{j=1}^{n} \Theta_{\omega_j, \omega_j} : n \in \mathbb{N}, \ \omega_j \in \Omega \}$$

is dense in the positive cone of $K(\Omega)$.

Proof. Assume that $h \in K(\Omega)_+$ and let $\varepsilon > 0$ be arbitrary. For each $s_0 \in \Delta$ consider the positive compact operator $h(s_0) \in K(H_{s_0})$. Then there are vectors $\xi_1, \ldots, \xi_{n_{s_0}} \in H_{s_0}$ such that

$$||h(s_0) - \sum_{j=1}^{n_{s_0}} \xi_j \otimes \xi_j|| < \varepsilon.$$

Using (II) in Definition 1.1, choose $\omega_1, \ldots, \omega_{n_{s_0}} \in \Omega$ such that $\omega_j(s_0) = \xi_j$, $1 \leq j \leq n_{s_0}$, and let $\kappa_{s_0} = \sum_{j=1}^{n_{s_0}} \Theta_{\omega_j, \omega_j}$. By continuity of the operator fields in A, there is an open set $U_{s_0} \subset \Delta$ containing s_0 such that $||h(s) - \kappa_{s_0}(s)|| < \varepsilon$ for all $s \in U_{s_0}$.

This procedure leads to an open cover $\{U_s\}_{s\in\Delta}$ of Δ , from which (by compactness) there exists a finite subcover $\{U_1,\ldots,U_m\}$ and corresponding fields $\kappa_i=\sum_{j=1}^{n_i}\Theta_{\omega_j^{[i]},\omega_j^{[i]}}$. Let $\{\psi_1,\ldots,\psi_m\}\subset C(\Delta)$ be a partition of unity subordinate to $\{U_1,\ldots,U_m\}$ and note that the equality $\psi_i\cdot\Theta_{\omega_j^{[i]},\omega_j^{[i]}}=\Theta_{\psi_i^{1/2}\cdot\omega_i^{[i]},\psi_j^{1/2}\cdot\omega_i^{[i]}}$ holds for all j and i. Hence, the field $\kappa=\sum_{i=1}^m\psi_i\cdot\kappa_i$ is in F, and for each $s\in\Delta$,

$$||h(s) - \kappa(s)|| = ||\sum_{i=1}^{m} \psi_i \cdot (h - \kappa_i)(s)|| \le \sum_{i=1}^{m} \psi_i(s)||(h - \kappa_i)(s)|| < \varepsilon.$$

Hence, h is in the norm-closure of F.

Lemma 4.3. Let $\{U_i\}_{i\in\Lambda}$ be a family of pairwise disjoint clopen subsets of Δ whose union U is dense in Δ , and let $c_i = \chi_{U_i} \in C(\Delta)$, for each $i \in \Lambda$. Suppose that $\{\omega_i\}_{i\in\Lambda}$ is any bounded family in Ω and let $\tilde{\omega} = \sum_{i\in\Lambda} c_i \, \omega_i \in \Omega_{\mathrm{wk}}$, in the sense of Remark 2.5. If $f \in C(\Delta)$ is such that f(s) = 0 for $s \in \Delta \setminus U$, then $f \cdot \tilde{\omega} \in \Omega$.

Proof. Fix $s_0 \in \Delta$ and let $\varepsilon > 0$. If $s_0 \in \Delta \setminus U$, then by the continuity of f and the fact that $f(s_0) = 0$ there exists an open subset $U_{s_0} \subset \Delta$ containing s_0 such that $|f(s)| < \varepsilon ||\tilde{\omega}||^{-1}$ for all $s \in U_{s_0}$. Hence, the vector field $f \cdot \tilde{\omega}$ is within ε of the zero vector field $0 \in \Omega$ on the open set U_{s_0} .

On the other hand, if $s_0 \in U$, then there exists $j \in \Lambda$ such that $s_0 \in U_j$. By construction, $c_j \cdot \tilde{\omega} = c_j \cdot \omega_j$ and so $\tilde{\omega}(s) = \omega_j(s)$ for all $s \in U_j$. Because $\|(f \cdot \tilde{\omega})(s) - (f \cdot \omega_j)(s)\| = 0$ for all $s \in U_j$, the vector field $f \cdot \tilde{\omega}$ is within ε of the vector field $f \cdot \omega_j \in \Omega$ on the open set U_j . Thus, by local uniform approximation property (axiom (IV) in Definition 1.1), $f \cdot \tilde{\omega} \in \Omega$.

The fact that $\Omega^{\perp} = \{0\}$ in Ω_{wk} (Lemma 3.4) suggests that Ω is somehow dense in Ω_{wk} . The next proposition makes this relation more explicit.

Proposition 4.4. If $\nu \in \Omega_{\text{wk}}$ and $\varepsilon > 0$, then there exist a family $\{c_i\}_{i \in \Lambda}$ of pairwise orthogonal projections in $C(\Delta)$ with supremum 1 and a bounded family $\{\omega_i\}_{i \in \Lambda} \subset \Omega$ such that $\|\nu - \sum_{i \in \Lambda} c_i \cdot \omega_i\| < \varepsilon$.

Proof. By Lemma 2.2, the function $s \mapsto \|\nu(s)\|$ is lower semicontinuous; hence, there exists a meagre set M_{ν} such that the function $s \mapsto \|\nu(s)\|$ is continuous in the relative topology of $\Delta \setminus M_{\nu}$. Observe that $(\Delta \setminus M_{\nu}) = \Delta$.

Fix $s_0 \in \Delta \setminus M_{\nu}$ and let $\omega \in \Omega$ be such that $\omega(s_0) = \nu(s_0)$. Since

$$\|\nu(s) - \omega(s)\|^2 = \|\nu(s)\|^2 + \|\omega(s)\|^2 - 2\operatorname{Re}\langle\nu,\omega\rangle(s),$$

the continuity in the relative topology of $\Delta \setminus M_{\nu}$ guarantees the existence of an open subset U_{s_0} of Δ containing s_0 such that $\|\nu(s) - \omega(s)\| \leq \varepsilon/2$ for all $s \in (\Delta \setminus M_{\nu}) \cap U_{s_0}$. Hence, again by continuity we get that $\|\nu - \omega\|(s) < \varepsilon$ for all $s \in \overline{U}_{s_0}$. The set \overline{U}_{s_0} is a clopen subset of Δ and $\Delta' = \Delta \setminus \overline{U}_{s_0}$ is also a Stonean space. Further, $M_{\nu} \cap \Delta' = M_{\nu} \cap (\Delta \setminus \overline{U}_{s_0})$ is a meagre set such that the function $s \mapsto \|\nu(s)\|$, for $s \in \Delta' \setminus (M_{\nu} \cap \Delta')$, is continuous in the relative topology.

An application of Zorn's Lemma yields a maximal family $\{(\chi_{U_i}, \omega_i)\}_{i \in \Lambda}$ such that $U_i \cap U_j = \emptyset$ for $i \neq j$ and such that $\|\chi_{U_i}(\nu - \omega_i)\| < \varepsilon$. Maximality ensures that $\overline{(\cup_{i \in I} U_i)} = \Delta$, for otherwise we can enlarge this family by the previous procedure in the Stonean space $\Delta \setminus \overline{(\cup_{i \in \Lambda} U_i)}$. If we let $c_i = \chi_{U_i}$ for $i \in \Lambda$ then it is clear by Lemma 2.2 that $\|\nu - \sum_{i \in \Lambda} c_i \cdot \omega_i\| < \varepsilon$ as for every $j \in \Lambda$ we have that $\|c_j(\nu - \sum_{i \in \Lambda} c_i \cdot \omega_i)\| = \|c_j(\nu - \omega_j)\| \le \varepsilon$ and $\bigvee_{i \in \Lambda} c_i = 1$.

The next result is the key step in the proof of Theorem 4.1.

Proposition 4.5. For every abelian projection $e \in B(\Omega_{wk})$ and $\varepsilon > 0$ there is an essential ideal $I \subseteq K(\Omega)$ and a multiplier $x \in M(I)$ such that $||e - x|| < \varepsilon$.

Proof. Assume that $e \in B(\Omega_{wk})$ is an abelian projection and let $\varepsilon > 0$. Thus, by [16, Lemma 13], $e = \Theta_{\nu,\nu}$ for some $\nu \in \Omega_{wk}$ for which $\langle \nu, \nu \rangle$ is a projection of $C(\Delta)$. By Proposition 4.4, there is a family $\{c_i\}_{i \in \Lambda}$ of pairwise orthogonal projections in $C(\Delta)$ with supremum 1 and a bounded family $\{\omega_j\}_{j \in \Lambda} \subset \Omega$ such that $\|\nu - \tilde{\omega}\| \le \varepsilon/(2\|\nu\|)$, where $\tilde{\omega} = \sum_{j \in \Lambda} c_j \cdot \omega_j \in \Omega_{wk}$. Each c_j is the characteristic function of a clopen set U_j and the union U of these sets U_j is dense in Δ .

Let $I = \{a \in K(\Omega) : a(s) = 0, \forall s \in \Delta \setminus U\}$, which is an essential ideal of $K(\Omega)$. Define $F^I \subset F \subset K(\Omega)_+$ to be the set

$$F^{I} = \{ \sum_{i=1}^{n} \Theta_{\mu_{i},\mu_{i}} : n \in \mathbb{N}, \ \mu_{i} \in \Omega, \ \mu_{i}|_{\Delta \setminus U} = 0, \ i = 1,\dots, n \}.$$

Suppose that $\eta \in \Omega$ satisfies $\|\eta(s)\| = 0$ for all $s \in \Delta \setminus U$, and consider $\Theta_{\eta,\eta} \in F^I$. Observe that $\Theta_{\tilde{\omega},\tilde{\omega}} \Theta_{\eta,\eta} = \Theta_{\langle \eta,\tilde{\omega}\rangle \cdot \tilde{\omega},\eta}$, which is an element of I because $\langle \eta,\tilde{\omega}\rangle(s) = \langle \eta(s),\tilde{\omega}(s)\rangle = 0$ for all $s \in \Delta \setminus U$ and $\langle \eta,\tilde{\omega}\rangle \cdot \tilde{\omega} \in \Omega$ by Lemma 4.3. Hence, $\Theta_{\tilde{\omega},\tilde{\omega}}$ maps the set F^I back into I. Because F^I is dense in I_+ , as we shall show below, $x = \Theta_{\tilde{\omega},\tilde{\omega}}$ is therefore a multiplier of I. Furthermore,

$$||e - x|| = ||\Theta_{\nu,\nu} - \Theta_{\tilde{\omega},\tilde{\omega}}|| \le (||\nu|| + ||\tilde{\omega}||) ||\nu - \tilde{\omega}|| \le \varepsilon.$$

It remains to show that F^I is dense in I_+ . To this end, assume $\varepsilon'>0$ and $\kappa\in I_+$. Thus, $\kappa(s)=0$ for all $s\in\Delta\setminus U$. Furthermore, by Lemma 4.2, there exists $h\in F$ such that $\|\kappa-h\|<\varepsilon'$. Let $\tilde{h}=\chi_{\Delta\setminus U}\cdot h$ and note that, as $\kappa\in I$, it is also true that $\|\kappa-\tilde{h}\|<\varepsilon'$. Now if h has the form $\sum_{j=1}^n\Theta_{\mu_j,\mu_j}$ for some $\mu_j\in\Omega$, then $\tilde{h}=\sum_{j=1}^n\Theta_{\chi_{\Delta\setminus U}\mu_j,\chi_{\Delta\setminus U}\mu_j}\in F^I$.

Proof of Theorem 4.1. Because $K(\Omega)$ is an ideal of A, we have $M(A) \subseteq M(K(\Omega))$. Moreover, as $K(\Omega)$ is an essential ideal of A we conclude that $M_{loc}(A) = M_{loc}(K(\Omega))$ [2, Proposition 2.3.6]. On the other hand, by [11, Theorem 4.6], the inclusions

$$B(\Omega) = M(K(\Omega)) \subseteq M_{loc}(K(\Omega)) \subseteq M_{loc}(M_{loc}(K(\Omega))) \subset B(\Omega_{wk})$$

hold.

Therefore, we are left to show that $M_{\text{loc}}(M_{\text{loc}}(K(\Omega))) = B(\Omega_{\text{wk}})$. By [11, Corollary 4.3], an element $z \in I(K(\Omega)) = B(\Omega_{\text{wk}})$ belongs to $M_{\text{loc}}(K(\Omega))$ if and only if for every $\varepsilon > 0$ there is an essential ideal $I \subseteq K(\Omega)$ and a multiplier $x \in M(I)$ such that $||z - x|| < \varepsilon$. By Proposition 3.8, $K(\Omega_{\text{wk}})$ is the (essential) ideal of $B(\Omega_{\text{wk}})$ generated by the abelian projections of $B(\Omega_{\text{wk}})$; thus, by Proposition 4.5, $K(\Omega_{\text{wk}}) \subseteq M_{\text{loc}}(K(\Omega))$. Hence, $K(\Omega_{\text{wk}})$ is an essential ideal of $M_{\text{loc}}(K(\Omega))$ and so $M(K(\Omega_{\text{wk}})) \subseteq M_{\text{loc}}(M_{\text{loc}}(K(\Omega)))$. However, $B(\Omega_{\text{wk}}) = M(K(\Omega_{\text{wk}}))$ by Kasparov's Theorem [17, Theorem 2.4] (or by a theorem of Pedersen [20]); hence,

$$B(\Omega_{wk}) = M(K(\Omega_{wk})) \subseteq M_{loc}(M_{loc}(K(\Omega))) \subseteq B(\Omega_{wk}),$$

which yields $M_{loc}(M_{loc}(K(\Omega))) = B(\Omega_{wk})$.

Somerset has shown that every separable postliminal (that is, type I) C*-algebra A has the property that $M_{\rm loc}(M_{\rm loc}(A))=I(A)$ [22, Theorem 2.8]. Theorem 4.1 demonstrates that the same behavior occurs with (certain) nonseparable type I C*-algebras. Somerset's methods are different from ours in at least two ways: he employs the Baire *-envelope of a C*-algebra where we use the injective envelope and he uses properties of Polish spaces—spaces that arise from the separability of the algebras under study. It is reasonable to conjecture that $M_{\rm loc}(M_{\rm loc}(A))=I(A)$ for all C*-algebras A that possess a postliminal essential ideal. To prove such a statement, it would be enough to prove it for any continuous trace C*-algebra A.

5. Effect of Decomposition into Homogeneous Modules

A Kaplansky-Hilbert module E over $C(\Delta)$ is said to be homogeneous [16] if if there is a subset $\{\nu_j\}_{j\in\Lambda}\subset E$ – called an orthonormal basis – such that $\langle\nu_i,\nu_j\rangle=0$ for all $j\neq i, |\nu_j|=1$ for all j, and $\{\nu_j\}_{j\in\Lambda}^{\perp}=\{0\}$, where for any $\nu\in E$, $|\nu|$ is the continuous real-valued function $|\nu|=\langle\nu,\nu\rangle^{1/2}\in C(\Delta)$.

Kaplansky introduced the notion of homogeneous AW*-module with the aim of reducing the study of abstract AW*-modules to the slightly more concrete setting in which the modules have an orthonormal basis. The decomposition of $\Omega_{\rm wk}$ into a direct sum of homogeneous modules affects C*-algebras of endomorphisms of $\Omega_{\rm wk}$ in different ways. In this section we show that a decomposition of $\Omega_{\rm wk}$ into a direct sum $\bigoplus_i E_i$ of homogeneous modules E_i leads one to consider two corresponding direct sum C*-algebras: $\bigoplus_i A_i$ and $\bigoplus_i M_{\rm loc}(A_i)$, where A_i is a subalgebra of A for all i. We prove that A need not be isomorphic to $\bigoplus_i A_i$, yet $M_{\rm loc}(A) \cong \bigoplus_i M_{\rm loc}(A_i)$. The latter result is especially interesting if one recalls that $M_{\rm loc}(A)$ is generally not an AW*-algebra [3, Theorem 6.13].

Theorem 5.1. Let $(\Delta, \{H_s\}_{s \in \Delta}, \Omega)$ be a continuous Hilbert bundle over the Stonean space Δ . There exists a family of pairwise orthogonal projections $\{c_i\}_{i \in I} \subset C(\Delta)$ with supremum 1 such that $c_i\Omega_{wk}$ is a homogeneous AW^* -module over $c_iC(\Delta)$, for each $i \in I$. Furthermore, for each $i \in I$ let $c_i = \chi_{\Delta_i}$ for a clopen set Δ_i and let $\Omega_i = \{\omega|_{\Delta_i} : \omega \in \Omega\}$. Then:

- (i) $(\Delta_i, \{H_s\}_{s \in \Delta_i}, \Omega_i)$ is a continuous Hilbert bundle;
- (ii) $(\Omega_i)_{wk} \cong c_i \cdot \Omega_{wk}$ as C^* -modules;
- (iii) $\Omega_{\mathrm{wk}} \cong \bigoplus_{i} (\Omega_{i})_{\mathrm{wk}} \text{ as } C^{*}\text{-modules};$
- (iv) $B((\Omega_i)_{wk}) \cong c_i \cdot B(\Omega_{wk})$ as C^* -algebras;
- $(\mathbf{v}) \ B(\Omega_{\mathbf{wk}}) \cong \bigoplus_{i} B((\Omega_{i})_{\mathbf{wk}}) \ as \ C^*$ -algebras.

Proof. Let $B=B(\Omega_{\mathrm{wk}})$. By [16, Theorem 1], there is a family $\{c_i=\chi_{\Delta_i}\}_{i\in I}\subset C(\Delta)$ of pairwise orthogonal projections such that $1=\sup_i c_i$ and $c_i\Omega_{\mathrm{wk}}$ is a homogeneous AW*-module over $c_iC(\Delta)$. Hence, the corresponding family of clopen subsets $\{\Delta_i\}_{i\in I}$ is pairwise disjoint and such that $\bigcup_{i\in I}\Delta_i$ is dense in Δ . Each Δ_i is itself a Stonean space, and it is easy to see that $C(\Delta_i)\cong c_i\,C(\Delta)$ (i) For axiom (I) in Definition 1.1, we aim to show that Ω_i is a $C(\Delta_i)$ module. Let $\omega\in\Omega$ and consider $\omega_i=\omega|_{\Delta_i}$. Choose any $f_i\in C(\Delta_i)$. As Δ_i is clopen, f_i can be extended to $F_i\in C(\Delta)$ such that $f_i=F_i|_{\Delta_i}$, and $F_i|_{\Delta\setminus\Delta_i}=0$. The action $f_i\cdot\omega_i=(F_i\cdot\omega)|_{\Delta_i}$ gives Ω_i the structure of a $C(\Delta_i)$ module. Axioms (II) and (III) of Definition 1.1 are trivially satisfied.

For axiom (IV), let $\xi: \Delta_i \to \bigsqcup_{s \in \Delta_i} H_s$ be a vector field such that for every $s_0 \in \Delta_i$ and $\varepsilon > 0$ there is an open set $U_i \subset \Delta_i$ containing s_0 and a $\omega_i \in \Omega_i$ with $\|\omega_i(s) - \xi(s)\| < \varepsilon$ for all $s \in U_i$. Let $\Xi: \Delta_i \to \bigsqcup_{s \in \Delta} H_s$ be the vector field that coincides with ξ on Δ_i and is identically zero off Δ_i . By the definition of Ω_i , there is $\omega \in \Omega$ such that $\omega_i = \omega|_{\Delta_i}$. The set U_i is also open in Δ , and $\|\omega(s) - \Xi(s)\| < \varepsilon$ for all $s \in U_i$. If $s_0 \notin \Delta_i$ choose any open set V_i containing s_0 such that $V_i \cap U_i = \emptyset$ and let $\omega \in \Omega$ be arbitrary; then $0 = \|\chi_{\Delta_i}(s)\omega(s) - \Xi(s)\| < \varepsilon$ for all $s \in V_i$. Since $\chi_{\Delta_i} \cdot \omega \in \Omega$ and since Ω is closed under local uniform approximation, $\Xi \in \Omega$, whence $\xi \in \Omega_i$.

- (ii) Let $T_i: c_i \Omega_{\mathrm{wk}} \to (\Omega_i)_{\mathrm{wk}}$ be given by $T_i(c_i\nu) = \nu|_{\Delta_i}$. It is clear that T_i is well defined, linear, bounded, and has trivial kernel; to show that it is onto, note that if $\nu_i \in (\Omega_i)_{\mathrm{wk}}$, then—since Δ_i is clopen—the vector field $\nu: \Delta \to \bigsqcup_{s \in \Delta} H_s$ defined by $\nu(s) = 0$, for $s \notin \Delta_i$, and $\nu(s) = \nu_i(s)$, for $s \in \Delta_i$, has the property that $\langle \omega, \nu \rangle \in C(\Delta)$, for all $\omega \in \Omega$; so $\nu \in \Omega_{\mathrm{wk}}$ and $\nu_i = T_i(c_i\nu)$.
- (iii) Let $T: \Omega_{wk} \to \bigoplus_i (\Omega_i)_{wk}$, given by $T\nu = (T_i(c_i\nu))_{i\in I}$. The previous paragraph and Lemma 2.1 show that T is an isometry; we show now that T is onto. Suppose that $\nu' = (\nu_i)_{i\in I} \in \bigoplus_i (\Omega_i)_{wk}$.

For each $i \in I$ let $\tilde{\nu}_i$ denote the vector field on Δ that coincides with ν_i on Δ_i and vanishes elsewhere. Then $\tilde{\nu}_i \in \Omega_{\mathrm{wk}}$ and $T_i(c_i\tilde{\nu}_i) = \nu_i$. Hence, if $\nu = \sum_i c_i\tilde{\nu}_i$ as in Remark 2.5, we have $\nu \in \Omega_{\mathrm{wk}}$ and $T\nu = \nu'$. Thus, Ω_{wk} and $\bigoplus_i (\Omega_i)_{\mathrm{wk}}$ are isomorphic Banach spaces. Similar arguments show that $\bigoplus_i (\Omega_i)_{\mathrm{wk}}$ is a $C(\Delta)$ -module and that T is module isomorphism. Hence, $\Omega_{\mathrm{wk}} \cong \bigoplus_i (\Omega_i)_{\mathrm{wk}}$ as C^* -modules.

(iv) Let $\rho_i: c_i B(\Omega_{wk}) \to B((\Omega_i)_{wk})$ be given by $\rho_i(c_i b) T_i(c_i \nu) = (b\nu)|_{\Delta_i}$. The map is well-defined because if $c_i b_1 = c_i b_2$ then for any $\nu \in \Omega_{wk}$ we have $(b_1 \nu)|_{\Delta_i} = (c_i b_1 \nu)|_{\Delta_i} = (c_i b_2 \nu)|_{\Delta_i} = (b_2 \nu)|_{\Delta_i}$. A similar computation shows that ρ_i is one-to-one, and linearity is clear. To see that ρ_i is onto, let $b_i \in B((\Omega_i)_{wk})$. Consider the injection $(\Omega_i)_{wk} \to (\Omega_{wk})$ where $(\Omega_i)_{wk} \to (\Omega_{wk})$ is the vector field that agrees with $(\Omega_i)_{wk} \to (\Omega_i)_{wk}$ be the operator given by $(\Omega_i)_{(\lambda_i)} \to (\Omega_i)_{(\lambda_i)}$. Then $(\Omega_i)_{(\lambda_i)} \to (\Omega_i)_{(\lambda_i)} \to (\Omega_i)_$

(v) Let $\rho: B(\Omega_{wk}) \to \bigoplus_i B((\Omega_i)_{wk})$ be the map $\rho(b) = (\rho_i(c_ib))_{i\in I}$. It is clear that ρ is a homomorphism. If $\rho(b) = 0$ for some $b \in B(\Omega_{wk})$, then – as each ρ_i is one-to-one – $c_ib = 0$ for all i; this implies that $b^*b = b^*(\sup_i (c_i \cdot I))b = \sup_i (b^*c_ib) = 0$ by [14, Corollary 4.10], so b = 0 and ρ is one-to-one. To show that ρ is onto, let $(b_i)_i \in \bigoplus_i B((\Omega_i)_{wk})$; as each ρ_i is onto, there exist operators $b^i \in B(\Omega_{wk})$ with $\rho_i(c_ib^i) = b_i$. Define $b \in B(\Omega_{wk})$ by $b\nu = \sum_i c_ib^i\nu$ (in the sense of Remark 2.5; that is, $c_ib\nu = c_ib^i\nu$). Then $\rho_i(c_ib)\nu|_{\Delta_i} = (c_ib\nu)|_{\Delta_i} = (c_ib^i\nu)|_{\Delta_i} = \rho_i(c_ib^i)\nu|_{\Delta_i} = b_i\nu|_{\Delta_i}$. So $\rho(b) = (b_i)_i$.

Proposition 5.2. Assume the notation, hypotheses, and conclusions of Theorem 5.1. Then, although $\Omega_{\rm wk} \cong \bigoplus_i (\Omega_i)_{\rm wk}$ canonically, the same is not necessarily true for Ω and $\bigoplus_i \Omega_i$. In particular, Ω can be properly contained in $\Omega_{\rm wk}$.

Proof. Take Δ and the family of clopen subsets $\{\Delta_i\}_{i\in I}$ in Theorem 5.1 to be such that $\bigcup_{i\in I}\Delta_i\neq\Delta$. Thus, I is an infinite set. Let H be a Hilbert space with orthonormal basis $\{e_i\}_{i\in I}$ and consider the trivial Hilbert bundle $\Omega=C(\Delta,H)$ of all continuous functions $\omega:\Delta\to H$. As in Theorem 5.1, let $\Omega_i=C(\Delta_i,H)$.

For each $i \in I$, set $\omega_i \in \Omega$ with $\omega_i(s) = e_i$ for all s and consider $(\omega_i)_{i \in I} \in \bigoplus_i \Omega_i$. Under the isomorphism of Theorem 5.1, this element $(\omega_i)_{i \in I}$ is identified with $\omega = \sum_{i \in I} \chi_{\Delta_i} \cdot \tilde{\omega}_i \in \Omega_{\text{wk}}$ (in the sense of Remark 2.5), where $\tilde{\omega}_i$ is any element of Ω that agrees with ω_i on Δ_i and vanishes off Δ_i . Under this identification, $\omega \notin \Omega$; that is, the function $s \mapsto \|\omega(s)\|$ fails to be continuous on Δ . We argue this by contradiction.

Assume that $s \mapsto \|\omega(s)\|$ is continuous on Δ . Because $\|\omega(s)\| = 1$ for all $s \in \bigcup_{i \in I} \Delta_i$, continuity implies that $\|\omega(s)\| = 1$ for $s \in \Delta$. Choose $s_0 \in \Delta \setminus (\bigcup_{i \in I} \Delta_i)$ and let $(s_\alpha)_{\alpha \in \Lambda} \subset \bigcup_{i \in I} \Delta_i$ be a net such that $s_\alpha \to s_0$. Let $\eta \in \Omega$ be the constant field $\eta(s) = \omega(s_0)$, for all $s \in \Delta$. Since $\omega \in \Omega_{wk}$, we have

(5)
$$\lim_{\alpha} \langle \omega(s_{\alpha}), \eta(s_{\alpha}) \rangle = \langle \omega(s_{0}), \eta(s_{0}) \rangle = \langle \omega(s_{0}), \omega(s_{0}) \rangle = 1.$$

For each $\alpha \in \Lambda$ let $i(\alpha) \in I$ be such that $s_{\alpha} \in \Delta_{i(\alpha)}$. Thus, for every $\alpha \in \Lambda$, $I_{\alpha} = \{i(\beta) : \beta \in I, \beta \geq \alpha\}$ is an infinite set (for otherwise $s_0 \in \Delta_i$ for some $i \in I$). Therefore,

(6)
$$\lim_{\alpha} \langle \omega(s_{\alpha}), \eta(s_{\alpha}) \rangle = \lim_{\alpha} \langle e_{i(\alpha)}, \omega(s_{0}) \rangle = 0.$$

As (5) and (6) cannot be true simultaneously, we obtain a contradiction. Hence, $\omega \notin \Omega$.

Our second reduction theorem below notes some consequences of Theorem 5.1.

Theorem 5.3. Let $(\Delta, \{H_t\}_{t \in \Delta}, \Omega)$ be a continuous Hilbert bundle over the Stonean space Δ and let A denote the associated Fell algebra. Let $\{c_i\}_{i \in I} \subset C(\Delta)$ be a family of pairwise orthogonal projections with supremum 1 such that $c_i\Omega_{wk}$ is a homogeneous AW^* -module over $c_iC(\Delta)$, for each $i \in I$. Furthermore, for each $i \in I$ let $c_i = \chi_{\Delta_i}$ for a clopen set Δ_i and let $\Omega_i = \{\omega|_{\Delta_i} : \omega \in \Omega\}$. Then:

- (i) if A_i denotes the Fell algebra of $(\Delta_i, \{H_s\}_{s \in \Delta_i}, \Omega_i)$, then $A_i \cong c_i \cdot A$;
- (ii) $I(A_i) = B((\Omega_i)_{wk});$
- $(\mathbf{iii})'$ $I(A) \cong \bigoplus_{i \in I} I(A_i);$
- (iv) $M_{loc}(A) \cong \bigoplus_{i \in I} M_{loc}(A_i)$.

Proof. Let A_i denote the C*-algebra of the continuous C*-bundle $(\Delta_i, \{H_s\}_{s \in \Delta_i}, \Gamma_i)$, where Γ_i consists of all weakly continuous almost finite-dimensional operator fields $a_i : \Delta_i \to \bigsqcup_{s \in \Delta_i} K(H_s)$ such that $s \mapsto \|a_i(s)\|$ is continuous, and let $B_i = B((\Omega_i)_{wk})$, a type I AW*-algebra with centre $Z(B_i) \cong C(\Delta_i)$.

- (i) For each $a_i \in \Gamma_i$ there is an $a \in \Gamma$ such that $a_i = a|_{\Delta_i}$. To verify this, let $a: \Delta_i \to \bigsqcup_{s \in \Delta} K(H_s)$ be the operator field defined by $a(s) = a_i(s)$, for $s \in \Delta_i$, and a(s) = 0, for $s \notin \Delta_i$. Since Δ_i is a clopen set, the maps $s \to ||a(s)||$ and $s \mapsto \langle a(s)\omega_1(s), \omega_2(s)\rangle$ are continuous for every $\omega_1, \omega_2 \in \Omega$. The operator field a is also locally finite-dimensional, again because Δ_i is clopen and a_i has the property on Δ_i . Hence, $a \in \Gamma$. Next, let $\pi_i: A_i \to c_i A$ be defined by $\pi_i(a_i) = c_i a$, where $a \in A$ is any operator field that restricts to a_i on Δ_i . This map is clearly well-defined, and a *-homomorphism.
- (ii) By Theorem 3.1, $B((\Omega_i)_{wk}) = I(A_i) = I(c_i A)$.
- (iii) By [14, Lemma 6.2], $I(c_iA) = c_iI(A)$. Hence, $I(A_i) = B_i$ and Theorem 5.1 immediately yields $I(A) \cong \bigoplus_{i \in I} I(A_i)$.
- (iv) We take each $M_{\text{loc}}(A_i)$ to be a C*-subalgebra of $B((\Omega_i)_{\text{wk}})$. First we remark that the isomorphism ρ from Theorem 5.1 sends A into $\bigoplus_i A_i$. To see why, recall that $a\nu(s) = a(s)\nu(s)$, for all $a \in A$, $\nu \in \Omega_{\text{wk}}$, and $s \in \Delta$ (Proposition 3.6. Since, for a given $i \in I$, the action of $\rho_i(a)$ on $\nu_i \in (\Omega_i)_{\text{wk}}$ is defined by $\nu_i \mapsto (a\nu)|_{\Delta_i}$, where $\nu \in \Omega_{\text{wk}}$ is any vector with $nu|_{\Delta_i} = \nu_i$, it is easy to verify that $\rho_i(a)$ is a weakly continuous almost finite-dimensional operator field on Δ_i .

To show that $\rho(M_{loc}(A)) \subseteq \bigoplus_i M_{loc}(A_i)$, let $y \in M_{loc}(A) \subset I(A)$ and suppose that $\varepsilon > 0$. Thus, there is an essential ideal $J \subseteq A$ and a multiplier $x \in M(J)$ such that $||x - y|| < \varepsilon$. Further, there exists an open dense subset $U \subset \Delta$ such that

(7)
$$J = \{a \in A : a(s) = 0, s \in \Delta \setminus U\}.$$

For $i \in I$, let $U_i = \Delta_i \cap U$, which is an open dense set in Δ_i . Therefore,

(8)
$$J_i = \{a_i \in A_i : a(s) = 0, s \in \Delta_i \setminus U_i\}$$

is an essential ideal in A_i . We aim to show that $\rho_i(y) \in M(J_i)$. To this end, select $a_i \in J_i$. As $A_i \cong c_i \cdot A$, there is an $a \in A$ such that $a_i(s) = a(s)$ for all $s \in \Delta_i$. In particular $a \in A$ can be chosen so that a(s) = 0 for all $s \in \Delta \setminus \Delta_i$. Because $a_i \in J_i$, we conclude that a(s) = 0 for all $s \in \Delta \setminus U$; that is, $a \in J$. Therefore, $ya \in J$, which implies that ya(s) = 0 for all $s \in \Delta \setminus U$. In particular, ya(s) = 0 for all $s \in \Delta_i \setminus U_i$. The element $\rho_i(y)a_i \in B((\Omega_i)_{wk})$ is in fact an operator field since $\rho_i(y)a_i = \rho_i(y)\rho_i(c_ia) = \rho_i(c_i(ya)) \in A_i$. Then, for all $s \in \Delta_i \setminus U_i$ and $v \in \Omega_{wk}$, $[\rho_i(y)a_i](s)(T_ic_iv)(s) = \rho_i(y)a_i(T_ic_iv)(s)\rho_i(c_iya)(T_ic_iv)(s) = (ya)v|_{\Delta_i}(s) = (ya)(s)v|_{\Delta_i}(s) = 0$. With ν being arbitrary, we conclude that $\rho_i(y)a_i(s) = 0$, that is $\rho_i(y)a_i \in J_i$, and so $\rho_i(y)$ is a left multiplier of J_i . By a similar argument, $\rho_i(y)$ is a right multiplier of J_i , and so $\rho_i \in M(J_i)$. Thus, $\rho(y) \in \bigoplus_i M_{loc}(A_i)$ and $\|\rho(x) - \rho(y)\| = \|x - y\| < \varepsilon$. As $\varepsilon > 0$ was chosen arbitrarily, this proves that $\rho(x) \in \bigoplus_i M_{loc}(A_i)$.

Conversely, assume that $(x_i)_i \in \bigoplus_i M_{loc}(A_i)$. For each $i \in I$, there exist an essential ideal $J_i \subset A_i$ and a $y_i \in M(J_i)$ such that $||x_i - y_i|| < \varepsilon$ for all $i \in I$. For each $i \in I$, there exists an open dense subset $U_i \subset \Delta_i$ such that J_i is given as in (8). Define $U = \bigcup_{i \in I} U_i$, which is an open dense subset of Δ and let J be the essential ideal of A defined as in (7) (for our present choice of U). Let $y \in B(\Omega_{wk})$ be such that $\rho(y) = (y_i)_i$. We now show that $y \in M(J)$.

For each $\omega \in \Omega$, we have that $y\omega \in \Omega_{wk}$.

CLAIM: if $\omega \in \Omega$ is such that $\omega(s) = 0$ for all $s \in \Delta \setminus U$, then $y\omega \in \Omega$ and $y\omega(s) = 0$ for $s \in \Delta \setminus U$.

Consider the set $F = \{\Theta_{\omega,\omega} : \omega \in \Omega, \ \omega(s) = 0 \ \text{for} \ s \in \Delta \setminus U\}$, the linear span of which is dense in J_+ by Lemma 4.2. By the Claim, $y\Theta_{\omega,\omega} = \Theta_{y\omega,\omega} \in J$ for all $\omega \in \Omega$. So y is a left multiplier of J. Similarly, y is a right multiplier of J, which yields $y \in M(J)$. Hence, $(x_i)_{i \in I}$ is within ε of $\rho(y) \in \rho(M(J)) \subseteq \rho(M_{loc}(A))$.

Now it remains to prove the claim. Assume that $\omega \in \Omega$ with $\omega(s) = 0$ for all $s \in \Delta \setminus U$. Let $i \in I$ and let $\omega_i = c_i \omega \in \Omega_i$ be the restriction of ω to Δ_i . Note that, for every $\eta_i \in \Omega_i$, $\Theta_{\omega_i, \eta_i} \in J_i$ and, hence, $y_i \Theta_{\omega_i, \eta_i} = \Theta_{y_i \omega_i, \eta_i} \in J_i$. It is also true that $y_i \omega_i \in \Omega_i$ by the following arguments. Suppose that $s_0 \in \Delta_i$ and let $\eta_i \in \Omega_i$ such that $\|\eta_i(s_0)\| = 1$. Choose a clopen subset $V_i \subset \Delta_i$ of s_0 for which $\|\eta_i(s)\| \ge 1/2$ for all $s \in V_i$ and define $f(s) = \chi_{V_i}(s) \|\eta_i(s)\|^{-2}$. Thus, $f \in C(\Delta_i)$

and so $f \cdot \eta_i \in \Omega_i$. Moreover, $y_i \Theta_{\omega_i, \eta_i}(f \cdot \eta_i) = \chi_{V_i} \cdot y_i(\omega_i) \in \Omega_i$. Thus, $y \omega_i$ is a local uniform limit of vectors fields in Ω_i and, hence, $y \omega_i \in \Omega_i$.

We now have, for all $\omega_i, \eta_i \in \Omega_i$, that $\Theta_{\omega_i, \eta_i} \in J_i$, $y_i \omega_i \in \Omega_i$, and $y_i \omega_i(s) = 0$ for all $s \in \Delta_i \setminus U_i$. Since $(y\omega)(s) = (y_i \omega_i)(s)$ for $s \in \Delta_i$, the lower semicontinuous function $s \mapsto \|(y\omega)(s)\|$ is continuous on $\bigcup_i \Delta_i$ and vanishes on $(\bigcup_i \Delta_i) \setminus U$. The key fact at this point is the following one: there exists C > 0 such that, if $s \in \Delta_i$ (for some $i \in I$), then $\|y\omega(s)\| \leq C \|\omega(s)\|$. Indeed, let $\delta > 0$ and let $W_i \subset \Delta_i$ be a clopen subset containing $s_0 \in \Delta_i$ and such that $\|\omega(s)\| \leq \|\omega(s_0)\| + \delta$ for all $s \in W_i$. Thus,

$$\|y\omega(s)\| = \|y_i\omega_i(s)\| = \|y_i\omega_i\|(s) \le \|y_i\| \|\chi_{W_i}\cdot\omega_i\| \le (\sup_i \|y_i\|) (\|\omega(s_0)\| + \delta),$$

for all $s \in W_i$. We aim show that the function $s \mapsto \|(y\omega)(s)\|$ is continuous on Δ . Let $s \in \Delta \setminus (\bigcup_i \Delta_i)$ and let $(s_\alpha)_\alpha \subset \bigcup_i \Delta_i$ be a net such that $s_\alpha \to s_0$ in Δ . This implies that $\lim_\alpha \|\omega(s_\alpha)\| = 0$. By lower semicontinuity of the function $s \mapsto \|(y\omega)(s)\|$,

$$0 \leq \|y\omega(s_0)\| \leq \lim_{\alpha} \|y\omega(s_\alpha)\| \leq C \|\omega(s_\alpha)\| = 0 ,$$

and from this it follows that the function $s \mapsto \|(y\omega)(s)\|$ is continuous on Δ and vanishes in $\Delta \setminus U$. This establishes our claim.

Local multiplier algebras behave well under direct sums: $M_{loc}(\oplus_i A_i) \cong \bigoplus_i M_{loc}(A_i)$ [2, Proposition 2.3.6]. However, the isomorphism of local multiplier algebras in Theorem 5.3 cannot be established via that generic result:

Proposition 5.4. Assume the notation, hypotheses, and conclusions of Theorem 5.3. Although ρ sends A into $\bigoplus_i A_i$, it need not be true that $A \cong \bigoplus_i A_i$.

Proof. If Δ and Ω are as in Proposition 5.2, then (using the notation established there) we have that $\rho(\Theta_{\omega,\omega}) = (\Theta_{\omega_i,\omega_i})_{i\in I} \in \bigoplus_{i\in I} A_i$, but $\rho(\Theta_{\omega,\omega}) \notin \rho(A)$.

References

- P. Ara and M. Mathieu, A simple local multiplier algebra, Math. Proc. Cambridge Philos. Soc. 126 (1999), no. 3, 555-564. MR MR1684250 (2001a:46056)
- [2] _____, Local multipliers of C^* -algebras, Springer Monographs in Mathematics, Springer-Verlag London Ltd., London, 2003. MR MR1940428 (2004b:46071)
- [3] ______, Maximal C*-algebras of quotients and injective envelopes of C*-algebras, Houston J. Math. 34 (2008), no. 3, 827–872. MR MR2448386 (2009k:46093)
- [4] M. Argerami, D. Farenick, and P. Massey, The gap between local multiplier algebras of C*-algebras, Q. J. Math. 60 (2009), no. 3, 273–281. MR MR2533657
- [5] S. K. Berberian, Baer *-rings, Springer-Verlag, New York, 1972, Die Grundlehren der mathematischen Wissenschaften, Band 195. MR MR0429975 (55 #2983)
- [6] G. F. Birkenmeier, J. K. Park, and S. T. Rizvi, Hulls of semiprime rings with applications to C*-algebras, J. Algebra 322 (2009), no. 2, 327–352. MR MR2518175
- [7] D. P. Blecher and V. I. Paulsen, Multipliers of operator spaces, and the injective envelope, Pacific J. Math. 200 (2001), no. 1, 1–17. MR MR1863404 (2002k:46150)
- [8] J. Dixmier and A. Douady, Champs continus d'espaces hilbertiens et de C*-algèbres, Bull. Soc. Math. France 91 (1963), 227–284. MR MR0163182 (29 #485)
- [9] R. Dumitru, C. Peligrad, and B. Vişinescu, Automorphisms inner in the local multiplier algebra and Connes spectrum, Operator theory 20, Theta Ser. Adv. Math., vol. 6, Theta, Bucharest, 2006, pp. 75–80.
 MR MR2276933 (2007k:46118)
- [10] J. M. G. Fell, The structure of algebras of operator fields, Acta Math. 106 (1961), 233–280. MR MR0164248 (29 #1547)
- [11] M. Frank and V. I. Paulsen, Injective envelopes of C*-algebras as operator modules, Pacific J. Math. 212 (2003), no. 1, 57–69. MR MR2016568 (2004h:46060)
- [12] H. Halpern, The maximal GCR ideal in an AW*-algebra, Proc. Amer. Math. Soc. 17 (1966), 906–914.
 MR MR0198265 (33 #6424)
- [13] M. Hamana, Injective envelopes of C^* -algebras, J. Math. Soc. Japan **31** (1979), no. 1, 181–197. MR MR519044 (80g:46048)
- [14] ______, Regular embeddings of C^* -algebras in monotone complete C^* -algebras, J. Math. Soc. Japan **33** (1981), no. 1, 159–183. MR MR597486 (82i:46089)
- [15] ______, Tensor products for monotone complete C^* -algebras. I, II, Japan. J. Math. (N.S.) **8** (1982), no. 2, 259–283, 285–295. MR MR722528 (86a:46073)
- [16] I. Kaplansky, Modules over operator algebras, Amer. J. Math. 75 (1953), 839–858. MR MR0058137 (15,327f)

- [17] E. C. Lance, Hilbert C*-modules, London Mathematical Society Lecture Note Series, vol. 210, Cambridge University Press, Cambridge, 1995, A toolkit for operator algebraists. MR MR1325694 (96k:46100)
- [18] V. Paulsen, Completely bounded maps and operator algebras, Cambridge Studies in Advanced Mathematics, vol. 78, Cambridge University Press, Cambridge, 2002. MR MR1976867 (2004c:46118)
- [19] G. K. Pedersen, Approximating derivations on ideals of C^* -algebras, Invent. Math. 45 (1978), no. 3, 299–305. MR MR0477792 (57 #17302)
- [20] ______, Multipliers of AW*-algebras, Math. Z. 187 (1984), no. 1, 23–24. MR MR753416 (85g:46076)
- [21] D. W. B. Somerset, The local multiplier algebra of a C*-algebra, Quart. J. Math. Oxford Ser. (2) 47 (1996), no. 185, 123–132. MR MR1380955 (97c:46072)
- [22] ______, The local multiplier algebra of a C^* -algebra. II, J. Funct. Anal. **171** (2000), no. 2, 308–330. MR MR1745633 (2001b:46091)
- [23] M. Takesaki, Theory of operator algebras. I, Encyclopaedia of Mathematical Sciences, vol. 124, Springer-Verlag, Berlin, 2002, Reprint of the first (1979) edition, Operator Algebras and Non-commutative Geometry, 5. MR MR1873025 (2002m:46083)

Department of Mathematics and Statistics, University of Regina, Regina, Saskatchewan S4S 0A2, Canada

 $E ext{-}mail\ address: argerami@math.uregina.ca}$

Department of Mathematics and Statistics, University of Regina, Regina, Saskatchewan S4S 0A2, Canada

E-mail address: douglas.farenick@uregina.ca

DEPARTAMENTO DE MATEMÁTICA, FACULTAD DE CIENCIAS EXACTAS, UNIVERSIDAD NACIONAL DE LA PLATA, LA PLATA, ARGENTINA

E-mail address: massey@mate.unlp.edu.ar