Products of idempotent operators

M. Laura Arias, Gustavo Corach and Alejandra Maestripieri

Abstract. The goal of this article is to study the set of all products EF with E, F idempotent operators defined on a Hilbert space. We present characterizations of this set in terms of operator ranges, Hilbert space decompositions and generalized inverses.

Mathematics Subject Classification (2010). Primary 47A05; Secondary 47A68.

Keywords. Factorizations, idempotent operators, projections, generalized inverses.

1. Introduction

Let \mathcal{H} be a Hilbert space. Denote by $L(\mathcal{H})$ the algebra of all bounded linear operators on \mathcal{H} , $\mathcal{Q} = \{E \in L(\mathcal{H}) : E^2 = E\}$ (idempotents) and $\mathcal{P} = \{P \in \mathcal{P} \cap \mathcal{P} \in \mathcal{P} \in$ $Q: P = P^*$ (orthogonal projections). The purpose of this paper is to study the set QQ, which consists of all products EF, where $E, F \in Q$. The study has been guided, in some sense, by the results of [11], concerning the set $\mathcal{PP} \subseteq$ QQ of all products PQ, where $P,Q \in \mathcal{P}$. Of course, the (unbounded) set QQis much bigger than the (bounded) set \mathcal{PP} . We mention a few examples of subsets of operators contained in QQ: nilpotent operators of order 2, normal operators T such that the kernel N(T) and the closure R(T) of the range have the same dimension; more generally, every T such that $N(T) \cap N(T^*)$ and $R(T) \cap R(T^*)$ have the same dimension; and even more generally, every T such that $\overline{R(T)}$ and N(T) have a common complement. This last class is related to a theorem of Lauzon and Treil, who in [24] found a complete characterization of all pairs of closed subspaces \mathcal{S}, \mathcal{T} of \mathcal{H} such that there exists another closed subspace \mathcal{M} with the property $\mathcal{S} + \mathcal{M} = \mathcal{T} + \mathcal{M} = \mathcal{H}$ (hereafter, + denotes a direct sum). Together with some characterizations of QQ which we describe below, we consider for every $T \in QQ$ the set of all

M. L. Arias and G. Corach are partially supported by CONICET (PIP 11220120100426), UBACYT 20020130100637 and FONCYT (PICT 2014-1776)

A. Maestripieri is supported by CONICET (PIP 168-2014-2016).

decompositions of T, i.e., $\{(E,F) \in \mathcal{Q} \times \mathcal{Q} : T = EF\}$. Recall that this has been done for $T \in \mathcal{PP}$ [11], where it is proven that T belongs to \mathcal{PP} if and only if $T = P_{\overline{R(T)}}P_{N(T)^{\perp}}$ (from here on, if \mathcal{S} is a closed subspace of \mathcal{H} then $P_{\mathcal{S}}$ denotes the orthogonal projection onto \mathcal{S}). This result, which is due to Crimmins (see [27, Theorem 8] for a proof) provides a standard factorization of every $T \in \mathcal{PP}$, which also has some optimal properties among every other $(P,Q) \in \mathcal{P} \times \mathcal{P}$ such that T = PQ. It turns out that the situation for \mathcal{QQ} is much more subtle: even if $T \in \mathcal{QQ}$ there exists $(E,F) \in \mathcal{Q} \times \mathcal{Q}$ such that T = EF, $R(E) = \overline{R(T)}$ and N(F) = N(T), it happens that, in general, this pair is not unique. Several other properties of operators in \mathcal{PP} do not hold in \mathcal{QQ} , in general. Thus, if $T \in \mathcal{PP}$ it holds that $\overline{R(T)} \cap N(T) = \{0\}$, $\overline{R(T)} + N(T)$ is dense in \mathcal{H} and $\overline{R(T)} + N(T) = \mathcal{H}$ if and only if R(T) is closed (see [11]). They all fail, in general, in \mathcal{QQ} . These properties even fail, in general, in the smaller set \mathcal{PQ} .

We collect here some references on previous results on \mathcal{PP} , \mathcal{PQ} and \mathcal{QQ} . There is an excellent survey by P.Y. Wu [29] about factorizations of type \mathcal{A}^n and \mathcal{AB} , where $n \geq 2$ and \mathcal{A} , \mathcal{B} are fixed classes of operators on \mathcal{H} as normal, Hermitian, positive, involutions, partial isometries, orthogonal projections, idempotents, and so on. We mention here a theorem of Ballantine [6]: if T is a a square matrix then $T \in \mathcal{Q}^k$ if and only if $\dim R(T-I) \leq k \dim N(T)$. If \mathcal{H} has infinite dimension, Dawlings [13] proved that $T \in \mathcal{Q}^k$ for some $k \geq 1$ if and only if T = I or $\dim N(T) = \dim N(T^*) = \infty$ or $0 < \dim N(T) =$ $\dim N(T^*)$ and $\dim R(I-T^*) < \infty$. Kuo and Wu [23] proved that, if $\dim \mathcal{H}$ is finite then $T \in \mathcal{P}^k$ for some k if and only if T is unitarly equivalent to a matrix of the form $\begin{pmatrix} I & 0 \\ 0 & S \end{pmatrix}$ where S is singular and ||S|| < 1. For k = 2, T. Crimmins proved that $T \in \mathcal{PP}$ if and only if $TT^*T = T^2$, and in such case $T = P_{\overline{R(T)}} P_{N(T)^{\perp}}$, as remarked above; the proof of Crimmins' result appeared in the paper by Radjavi and Williams [27], which contains many factorization results. More recent references include [11], which contains several results on \mathcal{PP} , [4] where there is a study of \mathcal{PL}^+ where \mathcal{L}^+ stands for the set of semidefinite positive operators on \mathcal{H} and [1] with a discussion on several examples of factorizations including Q, partial isometries, unitaries, and so on.

We briefly describe the contents of the paper. In Section 2 we collect some characterizations of \mathcal{QQ} . By using a slight extension of the well known majorization theorem of R. G. Douglas (see below), we prove that, for $T \in L(\mathcal{H})$ it holds that $T \in \mathcal{QQ}$ if and only if there exists $E \in \mathcal{Q}$ such that $R(E) = \overline{R(T)}$ and $R(T-T^2) \subseteq R(T(I-E))$. Also, $T \in \mathcal{QQ}$ if and only if there exists $E \in \mathcal{Q}$ such that $N(T) + N(E-T) = \mathcal{H}$. This last result is based on a result by Antezana et al. [2, Proposition 4.13] about the existence of idempotent solutions of an operator equation of the type A = XB. It is proven that also \mathcal{PQ} and \mathcal{PP} admit similar characterizations. As mentioned before, in [24], Lauzon and Treil parametrized the set \mathcal{X} of all pairs of closed subspaces of \mathcal{H} which admit a common direct complement (for different approaches to this result, see also the papers by Giol [19] and Drivaliaris and Yannakakis [16]).

We prove here that every $T \in L(\mathcal{H})$ such that $(\overline{R(T)}, N(T)) \in \mathcal{X}$ belongs to QQ. We also prove that two closed subspaces \mathcal{S}, \mathcal{T} of \mathcal{H} belong to \mathcal{X} if and only if there exists $T \in \mathcal{P}Q$ such that $R(T) = \mathcal{T}^{\perp}$ and $N(T) = \mathcal{S}$. As a consequence we get that a normal operator T such N(T) and $\overline{R(T)}$ have the same dimension belongs to QQ and, more generally, that every $T \in L(\mathcal{H})$ such that $\overline{R(T)} \cap \overline{R(T^*)}$ and $N(T) \cap N(T^*)$ have the same dimension belongs to QQ. Section 3 is concerned with the sets $(QQ)_T$ and $[QQ]_T$ for $T \in QQ$, namely:

$$(\mathcal{Q}\mathcal{Q})_T := \{ (E, F) \in \mathcal{Q} \times \mathcal{Q} : T = EF \},$$

and

$$[\mathcal{QQ}]_T := \{(E, F) \in (\mathcal{QQ})_T : R(E) = \overline{R(T)} \text{ and } N(F) = N(T)\}.$$

Notice that, with the obvious notations, $[\mathcal{PP}]_T = \{(P_{\overline{R(T)}}, P_{N(T)^{\perp}})\}$ and, by [11], $(\mathcal{PP})_T = \{(P_{\mathcal{M}_1}, P_{\mathcal{M}_2}) : \exists \text{ closed subspaces } \mathcal{N}_i \text{ of } \mathcal{M}_i \text{s.t. } \mathcal{M}_1 = \{(P_{\mathcal{M}_1}, P_{\mathcal{M}_2}) : \exists \text{ closed subspaces } \mathcal{N}_i \text{ of } \mathcal{M}_i \text{s.t. } \mathcal{M}_1 = \{(P_{\mathcal{M}_1}, P_{\mathcal{M}_2}) : \exists \text{ closed subspaces } \mathcal{N}_i \text{ of } \mathcal{M}_i \text{s.t. } \mathcal{M}_1 = \{(P_{\mathcal{M}_1}, P_{\mathcal{M}_2}) : \exists \text{ closed subspaces } \mathcal{N}_i \text{ of } \mathcal{M}_i \text{s.t. } \mathcal{M}_i = \{(P_{\mathcal{M}_1}, P_{\mathcal{M}_2}) : \exists \text{ closed subspaces } \mathcal{N}_i \text{ of } \mathcal{M}_i \text{s.t. } \mathcal{M}_i = \{(P_{\mathcal{M}_1}, P_{\mathcal{M}_2}) : \exists \text{ closed subspaces } \mathcal{N}_i \text{ of } \mathcal{M}_i \text{s.t. } \mathcal{M}_i = \{(P_{\mathcal{M}_1}, P_{\mathcal{M}_2}) : \exists \text{ closed subspaces } \mathcal{N}_i \text{ of } \mathcal{M}_i \text{s.t. } \mathcal{M}_i = \{(P_{\mathcal{M}_1}, P_{\mathcal{M}_2}) : \exists \text{ closed subspaces } \mathcal{N}_i \text{ of } \mathcal{M}_i \text{s.t. } \mathcal{M}_i = \{(P_{\mathcal{M}_1}, P_{\mathcal{M}_2}) : \exists \text{ closed subspaces } \mathcal{N}_i \text{ of } \mathcal{M}_i \text{s.t. } \mathcal{M}_i = \{(P_{\mathcal{M}_1}, P_{\mathcal{M}_2}) : \exists \text{ closed subspaces } \mathcal{M}_i \text{ of } \mathcal{M}_i \text{s.t. } \mathcal{M}_i = \{(P_{\mathcal{M}_1}, P_{\mathcal{M}_2}) : \exists \text{ closed subspaces } \mathcal{M}_i \text{ of } \mathcal{M}_i \text{s.t. } \mathcal{M}_i = \{(P_{\mathcal{M}_1}, P_{\mathcal{M}_2}) : \exists \text{ closed subspaces } \mathcal{M}_i \text{ of } \mathcal{M}_i \text{s.t. } \mathcal{M}_i = \{(P_{\mathcal{M}_1}, P_{\mathcal{M}_2}) : \exists \text{ closed subspaces } \mathcal{M}_i \text{ of } \mathcal{M}_i \text{s.t. } \mathcal{M}_i = \{(P_{\mathcal{M}_1}, P_{\mathcal{M}_2}) : \exists \text{ closed subspaces } \mathcal{M}_i \text{s.t. } \mathcal{M}_i = \{(P_{\mathcal{M}_1}, P_{\mathcal{M}_2}) : \exists \text{ closed subspaces } \mathcal{M}_i \text{ of } \mathcal{M}_i \text{s.t. } \mathcal{M}_i = \{(P_{\mathcal{M}_1}, P_{\mathcal{M}_2}) : \exists \text{ closed subspaces } \mathcal{M}_i \text{s.t. } \mathcal{M}_i = \{(P_{\mathcal{M}_1}, P_{\mathcal{M}_2}) : \exists \text{ closed subspaces } \mathcal{M}_i \text{s.t. } \mathcal{M}_i = \{(P_{\mathcal{M}_1}, P_{\mathcal{M}_2}) : \exists \text{ closed subspaces } \mathcal{M}_i \text{s.t. } \mathcal{M}_i \text{s.t. } \mathcal{M}_i = \{(P_{\mathcal{M}_1}, P_{\mathcal{M}_2}) : \exists \text{ closed subspaces } \mathcal{M}_i \text{s.t. } \mathcal{M}_i \text{s.t. } \mathcal{M}_i = \{(P_{\mathcal{M}_1}, P_{\mathcal{M}_2}) : \exists \text{ closed subspaces } \mathcal{M}_i \text{s.t. } \mathcal{M}_i \text{s$ $\overline{R(T)} \oplus \mathcal{N}_1, \mathcal{M}_2 = N(T)^{\perp} \oplus \mathcal{N}_2, \ \mathcal{N}_1 \perp \mathcal{N}_2 \text{ and } \mathcal{N}_1 \oplus \mathcal{N}_2 \subseteq R(T)^{\perp} \cap N(T) \}.$ For $(E,F) \in (\mathcal{QQ})_T$ it holds that $(E,F) \in [\mathcal{QQ}]_T$ if and only if N(E) + R(F) = \mathcal{H} (see Lemma 3.3) and this property, together with the use of the closed (unbounded) projection $H_{F,E}$ with $R(H_{F,E}) = R(F)$ and $N(H_{F,E}) = N(E)$, leads to the following new characterization of QQ, (Theorem 3.7): if $T \in L(\mathcal{H})$ then $T \in \mathcal{QQ}$ if and only if there exists a closed projection H such that THT = T and $T^*H^*T^* = T^*$, i.e., H (resp. H^*) is an unbounded inner inverse of T (resp. T^*). In particular, if R(T) is closed, $T \in \mathcal{QQ}$ if and only if $T^{\dagger} \in \mathcal{PQP}$, where T^{\dagger} denotes the Moore-Penrose inverse of T. Moreover, for $T \in \mathcal{QQ}$ it holds $\{H_{F,E} : (E,F) \in [\mathcal{QQ}]_T\} = \{H \in \mathcal{Q} : H \in T[1,2] \text{ and } H^* \in \mathcal{Q}\}$ $T^*[1]$, where $T[1] = \{X : TXT = T\}, T[1,2] = \{X \in T[1] : XTX = X\}$ and $\tilde{\mathcal{Q}}$ is the set of all (not necessarily bounded) closed projections in \mathcal{H} . Finally, Section 4 deals with splitting properties of R(T) and N(T) for $T \in$ QQ. As we have mentioned before, most of the properties regarding splitting that hold in \mathcal{PP} fail, in general, in \mathcal{QQ} . However, we get some results in similar directions. We only mention here a few of them: for $T \in \mathcal{QQ}$ it holds $R(T) \cap N(T) = \{0\}$ if and only if E + F - I is injective for some (and then all) $(E,F) \in [\mathcal{Q}\mathcal{Q}]_T$; R(T) + N(T) is dense if and only if R(E+F-I) is dense; and $R(T) + N(T) = \mathcal{H}$ if and only if E + F - I is invertible. The paper finishes with a complementary result to Ballantine's characterization of QQ, for \mathcal{H} finite dimensional, mentioned above. More precisely, we prove that if $T \in L(\mathcal{H})$ with dim $\mathcal{H} < \infty$ then $T \in \mathcal{QQ}$ if there exists $X \in L(\mathcal{H})$ such that $XTX = X^2$ and dim $N(X) < \dim N(T)$.

2. The set QQ

Our goal in this section is to describe the set $QQ := \{EF : E, F \in Q\}$, where $Q := \{E \in L(\mathcal{H}) : E^2 = E\}$. Observe that there are neither injective nor dense-range operators in QQ, except for the identity operator.

In [11] it is proven that, if $\mathcal{P} := \{E \in \mathcal{Q} : E^* = E\}$ then for $T \in \mathcal{PP}$ the pair $(P_{\overline{R(T)}}, P_{N(T)^{\perp}})$ has optimal properties in the set $\{(P, Q) \in \mathcal{P} \times \mathcal{P} : T = PQ\}$, namely, for all $P, Q \in \mathcal{P}$ such that T = PQ it holds that

- $R(P_{\overline{R(T)}}) \subseteq R(P), N(P_{N(T)^{\perp}}) \subseteq N(Q).$
- $||(P_{\overline{R(T)}} P_{N(T)^{\perp}})x|| \le ||(P Q)x||$ for all $x \in \mathcal{H}$.

We show now that the situation in QQ is completely different, in the sense that there is no such distinguished factorization of a $T \in QQ$ and it does not look evident how to define an optimal factorization of T. The next result is a key tool in what follows.

Lemma 2.1. Let $T \in \mathcal{QQ}$. Then, there exist $E, F \in \mathcal{Q}$ such that T = EF, $R(E) = \overline{R(T)}$ and N(F) = N(T).

Proof. Let T=E'F' with $E',F'\in\mathcal{Q}$. Trivially, $\overline{R(T)}\subseteq R(E')$ and $N(F')\subseteq N(T)$. Define $E=P_{\overline{R(T)}}E'$ and $F=F'P_{N(T)^{\perp}}$. Clearly, T=EF. Let us see that E,F satisfy the conditions of the lemma. First, $E^2=P_{\overline{R(T)}}E'P_{\overline{R(T)}}E'=P_{\overline{R(T)}}E'=E$ since $\overline{R(T)}\subseteq R(E')$. Moreover, $R(E)\subseteq \overline{R(T)}$, and given $x\in\overline{R(T)}$ then $x=P_{\overline{R(T)}}E'x=Ex$, i.e., $R(E)=\overline{R(T)}$. On the other hand, $F^2=F'P_{N(T)^{\perp}}F'P_{N(T)^{\perp}}=F'P_{N(T)^{\perp}}=F$, because $N(F')\subseteq N(T)=N(P_{N(T)^{\perp}})$. In addition, $N(T)\subseteq N(F)$ and given $x\in N(F)$ then $P_{N(T)^{\perp}}x\in N(F')\subseteq N(T)\cap N(T)^{\perp}=\{0\}$, i.e., $x\in N(T)$ and so N(T)=N(F) as desired.

It should be noticed that, for a general $T \in \mathcal{QQ}$, a factorization T = EF, with $E, F \in \mathcal{Q}$ and $R(E) = \overline{R(T)}, \, N(F) = N(T)$ is not unique. For example, consider $T = \frac{1}{2} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 2 \end{pmatrix}, \, E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \, F = \begin{pmatrix} \frac{1}{2} & \frac{-1}{2} & 0 \\ \frac{-1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}, \, E' = \begin{pmatrix} 1 & -2 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \text{ and } F' = \begin{pmatrix} \frac{3}{2} & \frac{-3}{2} & 2 \\ \frac{1}{2} & \frac{-1}{2} & 2 \\ 0 & 0 & 1 \end{pmatrix}. \, \text{ Therefore, a simple computation shows that } T = EF = E'F'; \, E, F, E', F' \in \mathcal{Q} \text{ and } R(E) = R(E') = \overline{R(T)}, \, N(F) = N(F') = N(T).$

Given $T \in \mathcal{QQ}$, the preceding lemma motivates the next definitions:

$$(\mathcal{Q}\mathcal{Q})_T := \{(E, F) \in \mathcal{Q} \times \mathcal{Q} : T = EF\},\$$

and

$$[\mathcal{Q}\mathcal{Q}]_T := \{(E, F) \in (\mathcal{Q}\mathcal{Q})_T : R(E) = \overline{R(T)} \text{ and } N(F) = N(T)\}.$$

We will frequently use the fact that $(E, F) \in [\mathcal{QQ}]_T$ if and only if $(F^*, E^*) \in [\mathcal{QQ}]_{T^*}$.

By the proof of Lemma 2.1, $(P_{\overline{R(T)}}E, FP_{N(T)^{\perp}}) \in [\mathcal{QQ}]_T$ if $(E, F) \in (\mathcal{QQ})_T$. Observe that this defines a retraction map:

$$\phi: (\mathcal{Q}\mathcal{Q})_T \to [\mathcal{Q}\mathcal{Q}]_T. \tag{2.1}$$

With the obvious notations, $[\mathcal{PP}]_T = \{(P_{\overline{R(T)}}, P_{N(T)^{\perp}})\}$. In particular, it says that there exists a natural cross section of the product map $\pi: \mathcal{P} \times \mathcal{P} : \to \mathcal{PP}$, namely, $s: \mathcal{PP} \to \mathcal{P} \times \mathcal{P}$, $s(T) = (P_{\overline{R(T)}}, P_{N(T)^{\perp}})$. Unfortunately, this section is not continuous and it is not useful to obtain topological facts on \mathcal{PP} . In any case, there is not such section for the map $\mathcal{Q} \times \mathcal{Q} : \to \mathcal{QQ}$; in fact, as it was mentioned above, there is no distinguished factorization of $T \in \mathcal{QQ}$.

In order to prove our first characterization of QQ, we introduce the well known Douglas' theorem on factorization of operators [17]. Here, we present a simple generalization of this result whose proof is similar to Douglas original proof, see [3]:

Theorem 2.2. Let $A \in L(\mathcal{H}, \mathcal{K})$ and $B \in L(\mathcal{F}, \mathcal{K})$. Then, there exists $C \in L(\mathcal{F}, \mathcal{H})$ such that AC = B if and only if $R(B) \subseteq R(A)$. In such case, if \mathcal{M} is a topological complement of N(A) then there exists a unique solution $X_{\mathcal{M}} \in L(\mathcal{F}, \mathcal{H})$ of the equation AX = B such that $R(X_{\mathcal{M}}) \subseteq \mathcal{M}$. The operator $X_{\mathcal{M}}$ will be called the **reduced solution for** \mathcal{M} of the equation AX = B.

Theorem 2.3. Let $T \in L(\mathcal{H})$. The next conditions are equivalent:

- 1. $T \in \mathcal{QQ}$.
- 2. $R(T-T^2) \subseteq R(T(I-E))$ for some $E \in \mathcal{Q}$ with $R(E) = \overline{R(T)}$.
- 3. $R((T-T^2)^*) \subseteq R((I-F)T)^*)$ for some $F \in \mathcal{Q}$ with N(F) = N(T).

Proof. $1 \Leftrightarrow 2$. Assume that $T \in \mathcal{QQ}$ and let $(E, F) \in [\mathcal{QQ}]_T$. Then, $T - T^2 = T(I - T) = EF(I - E)F = T(I - E)F$. Therefore, $R(T - T^2) = R(T(I - E)F) \subseteq R(T(I - E))$ where $E \in \mathcal{Q}$ and $R(E) = \overline{R(T)}$.

Conversely, suppose that $R(T-T^2)\subseteq R(T(I-E))$ for some $E\in\mathcal{Q}$ with $R(E)=\overline{R(T)}$. Then, by Theorem 2.2, the operator equation $T-T^2=T(I-E)X$ has a solution in $L(\mathcal{H})$. Now, as $N(T(I-E))=N(I-E)+R(I-E)\cap N(T)=\overline{R(T)}+N(E)\cap N(T)$ and $\mathcal{H}=\overline{R(T)}+N(E)$ there exists a closed subspace $\mathcal{S}\subseteq N(E)$ such that $\mathcal{H}=N(T(I-E))+\mathcal{S}$, (for example, $\mathcal{S}=N(E)\ominus N(E)\cap N(T)$). Let X_0 be the reduced solution for \mathcal{S} of $T-T^2=T(I-E)X$. Notice that $EX_0=0$, i.e., $T-T^2=TX_0$. Moreover, from these two last equalities it can be proven that $T-T^2=T(I-E)(X_0T+X_0^2)$, i.e., $X_0T+X_0^2$ is a solution of $T-T^2=T(I-E)X$ with $R(X_0T+X_0^2)\subseteq R(X_0)\subseteq \mathcal{S}$. Hence, by the uniqueness of the reduced solution, $X_0T+X_0^2=X_0$. Now, define $F:=T+X_0$. Hence, $F^2=(T+X_0)(T+X_0)=T^2+TX_0+X_0T+X_0^2=T+X_0=F$, i.e., $F\in\mathcal{Q}$ and T=EF. Therefore, $T\in\mathcal{QQ}$.

 $1 \Leftrightarrow 3$. Taking into account that $T \in \mathcal{QQ}$ if and only if $T^* \in \mathcal{QQ}$, then this equivalence follows by applying $1 \Leftrightarrow 2$ to T^* .

Remark 2.4. Ballantine [6] found a nice characterization of \mathcal{QQ} for matrices; he proved that $T \in \mathbb{C}^{n \times n}$ belongs to \mathcal{QQ} if and only if $\dim R(T-I) \leq 2\dim N(T)$. Observe that Theorem 2.3 can be interpreted as an extension of this result for $T \in L(\mathcal{H})$. In fact, $R(T-T^2) \subseteq R(T(I-E))$ if and only if $R(T-I) \subseteq R(I-E) + N(T)$. Hence, in matrices, this last inclusion implies that $\dim R(T-I) \leq \dim R(I-E) + \dim N(T) = 2\dim N(T)$ since $\dim R(I-E) = \dim N(T)$ for all $E \in \mathcal{Q}$ with $R(E) = \overline{R(T)}$. We shall return on this at the end of the paper.

In what follows we give a characterization of \mathcal{QQ} in terms of subspaces. By $Gr(\mathcal{H})$ we denote the set of all closed subspaces of \mathcal{H} and the symbol $E_{\mathcal{S}//\mathcal{T}}$ stands for the operator in \mathcal{Q} with range \mathcal{S} and nullspace \mathcal{T} provided that $\mathcal{S}, \mathcal{T} \in Gr(\mathcal{H})$ and $\mathcal{S} \dotplus \mathcal{T} = \mathcal{H}$. If $\mathcal{T} = \mathcal{S}^{\perp}$ then we simply write $P_{\mathcal{S}}$ instead of $E_{\mathcal{S}//\mathcal{S}^{\perp}}$.

Proposition 2.5. Let $T \in L(\mathcal{H})$. The next conditions are equivalent:

- 1. $T \in \mathcal{Q}\mathcal{Q}$.
- 2. There exist $S, W \in Gr(\mathcal{H})$ such that $\overline{R(T)} + S = \mathcal{H}$, $W + N(T) = \mathcal{H}$, and $P_{S^{\perp}}TP_{W} \in \mathcal{PP}$.

Proof. $1 \Rightarrow 2$. Let $\underline{T} = EF$ with $(E, F) \in [\mathcal{QQ}]_T$. Let $\mathcal{S} := N(E)$ and $\mathcal{W} := R(F)$. Hence, $\overline{R(T)} \dot{+} \mathcal{S} = \mathcal{H}$ and $\mathcal{W} \dot{+} N(T) = \mathcal{H}$. Moreover, $P_{\mathcal{S}^{\perp}} T P_{\mathcal{W}} = P_{\mathcal{S}^{\perp}} P_{\mathcal{W}} \in \mathcal{PP}$.

 $2 \Rightarrow 1$. Define $E := Q_{\overline{R(T)}//S}$ and $F := Q_{W//N(T)}$ and let $P_1, P_2 \in \mathcal{P}$ such that $P_{S^{\perp}}TP_{W} = P_1P_2$. There is no loss of generality in assuming that $R(P_1) = \overline{R(P_{S^{\perp}}TP_{W})}$ and $N(P_2) = N(P_{S^{\perp}}TP_{W})$. Thus, $R(P_1) \subseteq S^{\perp}$ or, equivalently $N(E) = S \subseteq N(P_1)$ and $W^{\perp} \subseteq N(P_2)$ or, equivalently, $R(P_2) \subseteq W = R(F)$. Therefore, $P_1 = P_1E$ and $FP_2 = P_2$. Thus, $(EP_1)^2 = EP_1EP_1 = EP_1$ and $(P_2F)^2 = P_2FP_2F = P_2F$, i.e., $EP_1, P_2F \in \mathcal{Q}$. Now,

$$T = ETF = EP_{S^{\perp}}TP_{W}F = EP_{1}P_{2}F \in \mathcal{QQ},$$

and the proof is finished.

The next result due to Antezana et al. [2, Proposition 4.13] will be useful in order to obtain another characterization of QQ:

Proposition 2.6. Given $A, B \in L(\mathcal{H}, \mathcal{K})$, the following statements are equivalent:

- 1. $\overline{R(A)} + \overline{R(B-A)}$ is closed.
- 2. There exists $E \in \mathcal{Q}$ such that A = EB.

Applying the previous result and recalling that $T \in \mathcal{QQ}$ if and only if $T^* \in \mathcal{QQ}$ we obtain the following:

Proposition 2.7. Let $T \in L(\mathcal{H})$. The next conditions are equivalent:

- 1. $T \in \mathcal{Q}\mathcal{Q}$.
- 2. There exists $E \in \mathcal{Q}$ such that $\overline{R(T)} + \overline{R(E-T)}$ is closed.
- 3. There exists $E \in \mathcal{Q}$ such that $\mathcal{H} = N(T) + N(E T)$.

Following the same lines we get the next characterizations of \mathcal{PQ} and $\mathcal{PP}.$

Proposition 2.8. Let $T \in L(\mathcal{H})$. The next conditions are equivalent:

- 1. $T \in \mathcal{PQ}$.
- 2. There exists a topological complement \mathcal{M} of N(T) such that $||Tx||^2 = \langle Tx, x \rangle$ for all $x \in \mathcal{M}$.
- 3. $T^*T = T^*E$ for some $E \in \mathcal{Q}$.
- 4. $\overline{R(T^*T)} + \overline{R(T-T^*T)}$ is closed.

Proof. $1 \Rightarrow 2$. Let T = PE with $P \in \mathcal{P}$ and $E \in \mathcal{Q}$. Without loss of generality, we can consider N(E) = N(T). Let $\mathcal{M} = R(E)$. Then, if $x \in \mathcal{M}$ we have that $||Tx||^2 = \langle x, T^*Tx \rangle = \langle x, E^*PEx \rangle = \langle x, E^*Px \rangle = \langle PEx, x \rangle = \langle Tx, x \rangle$, as desired.

 $2 \Rightarrow 3$. Assume that $||Tx||^2 = \langle Tx, x \rangle$ for all $x \in \mathcal{M}$, with $\mathcal{M} + N(T) = \mathcal{H}$. Define $E := E_{\mathcal{M}/N(T)} \in \mathcal{Q}$. Then, $||TEx||^2 = \langle TEx, Ex \rangle$ for all $x \in \mathcal{H}$. Now, as N(E) = N(T) then TE = T and so $\langle T^*Tx, x \rangle = ||Tx||^2 = \langle Tx, Ex \rangle = \langle E^*Tx, x \rangle$ for all $x \in \mathcal{H}$. Thus, $T^*T = E^*T$, i.e., $T^*T = T^*E$.

 $3 \Rightarrow 1$. Suppose that $T^*T = T^*E$ for some $E \in \mathcal{Q}$. Then, $T^*T = T^*P_{\overline{R(T)}}E$ and so $T = P_{\overline{R(T)}}E$.

 $3 \Leftrightarrow 4$. It follows by Proposition 2.6.

Proposition 2.9. Let $T \in L(\mathcal{H})$. The next conditions are equivalent:

- 1. $T \in \mathcal{PP}$.
- 2. $T^*T = T^*P$ for some $P \in \mathcal{P}$.
- 3. $R(T^*T) \perp R(T T^*T)$.

Proof. $1 \Leftrightarrow 2$. If $T = P_{\overline{R(T)}}P_{N(T)^{\perp}}$ then $T^*T = T^*P_{N(T)^{\perp}}$. Conversely, if $T^*T = T^*P$ for some $P \in \mathcal{P}$ then $T^*T = T^*P_{\overline{R(T)}}P$ and so $T, P_{\overline{R(T)}}P$ are both reduced solutions for $N(T^*)^{\perp}$ of $T^*X = T^*T$. Hence, by the uniqueness of the reduced solution, we get that $T = P_{\overline{R(T)}}P \in \mathcal{PP}$, as desired.

 $1 \Leftrightarrow 3$. If $T = P_1P_2$ with $P_1, P_2 \in \mathcal{P}$ then $T^*T = P_2P_1P_2$ and $T - T^*T = (I - P_2)P_1P_2$. Thus, $R(T^*T) \perp R(T - T^*T)$.

Conversely, suppose that $R(T^*T) \perp R(T-T^*T)$. Then $\overline{R(T-T^*T)} \subseteq N(P_{\overline{R(T^*T)}})$ and so $P_{\overline{R(T^*T)}}T = P_{\overline{R(T^*T)}}(T-T^*T+T^*T) = T^*T$; since conditions 1 and 2 are equivalent it follows that $T \in \mathcal{PP}$.

The set QQ can be also characterized in terms of the generalized Wiener-Hopf operators, i.e., operators of the form $P_{\mathcal{M}}T|_{\mathcal{M}}$ where $T \in L(\mathcal{H})$. For this, we state the next result:

Lemma 2.10. Let $T \in L(\mathcal{H})$, then $T \in \mathcal{Q}$ if and only if $T = P_{\overline{R(T)}}A$ for some $A \in Gl(\mathcal{H})^+$ and $P_{\overline{R(T)}}AP_{\overline{R(T)}} = P_{\overline{R(T)}}$.

Proof. If $T \in \mathcal{Q}$ then the existence of $A \in Gl(\mathcal{H})^+$ such that $T = P_{\overline{R(T)}}A$ is guaranteed because of [22, Theorem 1] (see also [4, Theorem 3.3]) and then, trivially, $P_{\overline{R(T)}}AP_{\overline{R(T)}} = P_{\overline{R(T)}}$. The converse is obvious.

Now, applying the previous lemma we get the following:

Proposition 2.11. Let $T \in L(\mathcal{H})$. Therefore $T \in \mathcal{QQ}$ if and only if $T = P_{\overline{R(T)}}ABP_{N(T)^{\perp}}$ for some $A, B \in Gl(\mathcal{H})^+$ such that $P_{\overline{R(T)}}A|_{\overline{R(T)}} = I|_{\overline{R(T)}}$ and $P_{N(T)^{\perp}}B|_{N(T)^{\perp}} = I|_{N(T)^{\perp}}$.

2.1. Some examples

Lauzon and Treil [24] parametrized the set \mathcal{X} of pairs of closed subspaces of a Hilbert space \mathcal{H} which admit a common direct complement, in symbols, $\mathcal{X} = \{(\mathcal{M}, \mathcal{N}) : \mathcal{M}, \mathcal{N} \in Gr(\mathcal{H}), \ \exists \ \mathcal{S} \in Gr(\mathcal{H}) \ s.t. \ \mathcal{M} + \mathcal{S} = \mathcal{N} + \mathcal{S} = \mathcal{H}\}.$ We show now that any $T \in L(\mathcal{H})$ such that $(\overline{R(T)}, N(T)) \in \mathcal{X}$ belongs to $\mathcal{Q}\mathcal{Q}$. We also characterize \mathcal{X} by proving that if $\mathcal{M}, \mathcal{N} \in Gr(\mathcal{H})$ then $(\mathcal{M}, \mathcal{N}) \in \mathcal{X}$ if and only if there exists $T \in \mathcal{P}\mathcal{Q}$ such that $R(T) = \mathcal{N}^{\perp}$ and $N(T) = \mathcal{M}$.

Proposition 2.12. Let $T \in L(\mathcal{H})$. If $\overline{R(T)}$ and N(T) have a common topological complement then $T \in \mathcal{QQ}$.

Proof. Let $S \in Gr(\mathcal{H})$ such that $\mathcal{H} = \overline{R(T)} \dotplus \mathcal{S} = N(T) \dotplus \mathcal{S}$ and define $E = Q_{\overline{R(T)}//S}$. Hence, R(T(I-E)) = T(S) = R(T) where the last equality holds because $N(T) \dotplus \mathcal{S} = \mathcal{H}$. Thus, as $R(T-T^2) \subseteq R(T)$ we have that $R(T-T^2) \subseteq R(T(I-E))$. Therefore, by Proposition 2.3, it holds that $T \in \mathcal{QQ}$.

The converse of the above corollary is false, in general. For example, consider $E \in \mathcal{Q}$ with $\dim(R(E)) \neq \dim(N(E))$; trivially, $E \in \mathcal{Q}\mathcal{Q}$ and R(E) and N(E) may not have a common complement.

Proposition 2.13. Let S, T be two closed subspaces of H. Then, S, T have a common topological complement in H if and only if there exists $T \in \mathcal{PQ}$ with $R(T) = \mathcal{T}^{\perp}$ and N(T) = S.

Proof. Suppose that there exists a closed subspace \mathcal{W} such that $\mathcal{H} = \mathcal{S} + \mathcal{W} = \mathcal{T} + \mathcal{W}$. Define $E = E_{\mathcal{W}//\mathcal{S}}$ and $T = P_{\mathcal{T}^{\perp}}E \in \mathcal{PQ}$. We claim that $R(T) = \mathcal{T}^{\perp}$ and $N(T) = \mathcal{S}$. In fact, $R(T) = P_{\mathcal{T}^{\perp}}(\mathcal{W}) = R(P_{\mathcal{T}^{\perp}}) = \mathcal{T}^{\perp}$ because $\mathcal{H} = \mathcal{T} + \mathcal{W}$ and $N(T) = N(E) + R(E) \cap N(P_{\mathcal{T}^{\perp}}) = \mathcal{S} + \mathcal{W} \cap \mathcal{T} = \mathcal{S}$ because $\mathcal{W} \cap \mathcal{T} = \{0\}$.

Conversely, let $T \in \mathcal{PQ}$ with $R(T) = \mathcal{T}^{\perp}$ and $N(T) = \mathcal{S}$. Then, $T = P_{\mathcal{T}^{\perp}}Q_{\mathcal{W}//\mathcal{S}}$ for some complement \mathcal{W} of \mathcal{S} . Now, as $R(T) = \mathcal{T}^{\perp}$ then $\mathcal{H} = \mathcal{W} + \mathcal{T}$. On the other hand, as $\mathcal{S} = N(T) = \mathcal{S} + \mathcal{W} \cap \mathcal{T}$ we have that $\mathcal{W} \cap \mathcal{T} = \{0\}$, i.e., $\mathcal{H} = \mathcal{W} + \mathcal{T}$. Therefore, \mathcal{W} is a common complement of \mathcal{S} and \mathcal{T} .

Examples. Applying Theorem 2.3 and Proposition 2.12 the following examples of operators in QQ can be easily obtained:

1. If $\dim(\overline{R(T)} \cap R(T^*)) = \dim(N(T) \cap N(T^*))$ then, by [24, Remark 0.4], $\overline{R(T)}$ and N(T) have a common topological complement. Hence, by the previous corollary $T \in \mathcal{QQ}$. In particular, if T is a normal operator with $\dim(\overline{R(T)}) = \dim N(T)$ then $T \in \mathcal{QQ}$. On the other hand, notice

that if $T \in \mathcal{PP}$ is normal then $T \in \mathcal{P}$. In fact, if $T \in \mathcal{PP}$ then $T = P_{\overline{R(T)}}P_{N(T)^{\perp}}$, but as T is normal then $\overline{R(T)} = N(T)^{\perp}$ and so $T = P_{N(T)^{\perp}} \in \mathcal{P}$.

2. If $T^2 = 0$ then $T \in \mathcal{QQ}$. In fact, $R(T - T^2) = R(T) = R(T(I - P_{\overline{R(T)}}))$ where the last equality holds because $R(T) \subseteq N(T)$. Then, by Theorem 2.3, $T \in \mathcal{QQ}$ (moreover, $T \in \mathcal{PQ}$). See also [1, Theorem 6.1]. On the other side, notice that if $T^2 = 0$ and $T \in \mathcal{PP}$ then T = 0. Indeed, if $T^2 = 0$ then $R(T) \subseteq N(T)$ and so $T = P_{\overline{R(T)}} P_{N(T)^{\perp}} = 0$.

3. The sets $(QQ)_T$ and $[QQ]_T$

This section is devoted to study the sets $(QQ)_T$ and $[QQ]_T$ for $T \in QQ$. For this aim, we start by establishing the relationship between $(QQ)_T$ and $[QQ]_T$:

Proposition 3.1. Let $T \in \mathcal{QQ}$. Then,

$$(\mathcal{QQ})_T = \{(E,F) \in \mathcal{Q} \times \mathcal{Q} : E = E_0 + E_1, F = F_0 + F_1 \text{ with } E_1, F_1 \in \mathcal{Q}, (E_0, F_0) \in [\mathcal{QQ}]_T, \text{ and } E_0F_1 = E_1F_0 = E_1F_1 = 0\}.$$

Proof. Let $(E, F) \in (\mathcal{QQ})_T$ and define $E_0 := P_{\overline{R(T)}}E$ and $F_= := FP_{N(T)^{\perp}}$. By the proof of Lemma 2.1, we have that $(E_0, F_0) \in [\mathcal{QQ}]_T$. Denote by $E_1 = E - E_0 = (I - P_{\overline{R(T)}})E$ and $F_1 = F - F_0 = F(I - P_{N(T)^{\perp}})$. Hence, $E_1^2 = (I - P_{\overline{R(T)}})E(I - P_{\overline{R(T)}})E = (I - P_{\overline{R(T)}})(E - EP_{\overline{R(T)}})E = (I - P_{\overline{R(T)}})(E - P_{\overline{R(T)}})E = (I - P_{\overline{R(T)}})(I - P_{\overline{R(T)}})E^2 = (I - P_{\overline{R(T)}})E = E_1$, where the third equality holds because $\overline{R(T)} \subseteq R(E)$ since T = EF. Thus, $E_1 \in \mathcal{Q}$. Analogously, since $N(F) \subseteq N(T)$ because T = EF, we get that $F_1^2 = F(I - P_{N(T)^{\perp}})F(I - P_{N(T)^{\perp}}) = F(F - P_{N(T)^{\perp}})F(I - P_{N(T)^{\perp}}) = F(F - P_{N(T)^{\perp}})(I - P_{N(T)^{\perp}}) = F(I - P_{N(T)^{\perp}}) = F_1$, i.e., $F_1 \in \mathcal{Q}$. Finally, $E_0F_1 = P_{\overline{R(T)}}EF(I - P_{N(T)^{\perp}}) = P_{\overline{R(T)}}T(I - P_{N(T)^{\perp}}) = 0$, $E_1F_1 = (I - P_{\overline{R(T)}})EF(I - P_{N(T)^{\perp}}) = (I - P_{\overline{R(T)}})T(I - P_{N(T)^{\perp}}) = 0$ and $E_1F_0 = (I - P_{\overline{R(T)}})EF(I - P_{N(T)^{\perp}}) = (I - P_{\overline{R(T)}})T(I - P_{N(T)^{\perp}}) = 0$; as desired.

For the other inclusion, let $(E, F) \in \mathcal{Q} \times \mathcal{Q}$ with the stated properties. Let us see that $(E, F) \in (\mathcal{Q}\mathcal{Q})_T$. For this, we only need to prove that T = EF. Now, $EF = (E_0 + E_1)(F_0 + F_1) = E_0F_0 + E_0F_1 + E_1F_0 + E_1F_1 = E_0F_0 = T$. The proof is complete.

Proposition 3.2. Let $T \in QQ$, then

$$\begin{split} [\mathcal{QQ}]_T &=& \{(E,F) \in \mathcal{Q} \times \mathcal{Q} : R(E) = \overline{R(T)}, \ R(T-T^2) \subseteq R(T(I-E)) \\ &\quad \text{and } F = T + (I-E)XP_{N(T)^\perp} \quad \text{with X a solution of} \\ &\quad T - T^2 = T(I-E)X\}. \\ &=& \{(E,F) \in \mathcal{Q} \times \mathcal{Q} : R((T-T^2)^*) \subseteq R((T(I-F))^*), \\ &\quad N(F) = N(T), \text{and } E = T + P_{\overline{R(T)}}X(I-F) \\ &\quad \text{with X a solution of } T - T^2 = X(I-F)T\}. \end{split}$$

10

Proof. Let $(E,F) \in [\mathcal{QQ}]_T$ then, clearly, $R(E) = \overline{R(T)}$. Moreover, $F = EF + (I-E)F = T + (I-E)FP_{N(T)^{\perp}}$ because N(F) = N(T) and it is straightforward that $T - T^2 = T(I - E)F$. Conversely, let $(E,F) \in \mathcal{Q} \times \mathcal{Q}$ with $R(E) = \overline{R(T)}$ and $F = T + (I-E)XP_{N(T)^{\perp}}$ for some $X \in L(\mathcal{H})$ such that $T - T^2 = T(I - E)X$. Notice that the existence of X is guaranteed because $R(T - T^2) \subseteq R(T(I - E))$. Clearly, EF = ET = T and N(F) = N(T). It remains to show that $F \in \mathcal{Q}$. Fist, observe that as $T - T^2 = T(I - E)X$ then (I - E)X = I - T + Z for some $Z \in L(\mathcal{H})$ with $R(Z) \subseteq N(T)$. Now,

$$\begin{split} F^2 &= T^2 + T(I-E)XP_{N(T)^{\perp}} + (I-E)XP_{N(T)^{\perp}}(T + (I-E)XP_{N(T)^{\perp}}) \\ &= T^2 + (T-T^2) + (I-E)XP_{N(T)^{\perp}}(T + (I-E)XP_{N(T)^{\perp}}) \\ &= T + (I-E)XP_{N(T)^{\perp}}(T + P_{N(T)^{\perp}} - T + ZP_{N(T)^{\perp}}) \\ &= T + (I-E)XP_{N(T)^{\perp}} = F \end{split}$$

Therefore $(E, F) \in [\mathcal{QQ}]_T$ and the first equality is proved.

Analogously, but working with $T^* \in \mathcal{QQ}$, we get the second equality.

Given $T \in \mathcal{QQ}$ every pair $(E, F) \in [\mathcal{QQ}]_T$ can be associated to the pair of subspaces (R(F), N(E)). The next result gives a necessary and sufficient condition that these subspaces must fulfill in order that $(E, F) \in [\mathcal{QQ}]_T$.

Lemma 3.3. Let $T \in \mathcal{QQ}$ and $(E, F) \in (\mathcal{QQ})_T$. Then $(E, F) \in [\mathcal{QQ}]_T$ if and only if $R(F) + N(E) = \mathcal{H}$.

Proof. Let $(E, F) \in [\mathcal{QQ}]_T$, i.e., T = EF, $R(E) = \overline{R(T)}$ and N(F) = N(T). We claim that $R(F) \cap N(E) = \{0\}$. In fact, if $y \in R(F) \cap N(E)$ then y = Fy and 0 = Ey = EFy = Ty, i.e., $y \in N(T) = N(F)$ and so y = Fy = 0. Analogously, since $(F^*, E^*) \in [\mathcal{QQ}]_{T^*}$, we get that $R(E^*) \cap N(F^*) = \{0\}$ or, equivalently, $\overline{R(F)} + N(E) = \mathcal{H}$. Therefore, $\overline{R(F)} + N(E) = \mathcal{H}$ as claimed.

Conversely, let $(E,F) \in \mathcal{Q} \times \mathcal{Q}$ such that T = EF and $R(F) + N(E) = \mathcal{H}$. Let us prove that N(F) = N(T). Clearly, as T = EF then $N(F) \subseteq N(T)$. On the other hand, if $x \in N(T)$ then 0 = Tx = EFx, so $Fx \in R(F) \cap N(E) = \{0\}$, i.e., $x \in N(F)$. Hence, N(F) = N(T). Analogously, since $T^* = F^*E^*$ and $R(E^*) \cap N(F^*) = \{0\}$ (because $\overline{R(F) + N(E)} = \mathcal{H}$) we have that $N(E^*) = N(T^*)$ or, equivalently, $R(E) = \overline{R(T)}$. Therefore, $(E,F) \in [\mathcal{QQ}]_T$.

Corollary 3.4. Let $T \in QQ$ and $(E, F) \in [QQ]_T$. Then, T has closed range if and only if $N(E) + R(F) = \mathcal{H}$.

Proof. It follows by Lemma 3.3 and the fact that if $A, B \in L(\mathcal{H})$ have closed ranges then AB has closed range if and only if N(A) + R(B) is closed, see [14, Theorem 22].

In order to get another description of QQ we need the concept of (not necessarily bounded) closed projection. A densely defined operator H is a projection if $R(H) \subseteq \mathcal{D}(H)$ and H(Hx) = Hx for all $x \in \mathcal{D}(H)$. In this case,

it holds that $\mathcal{D}(H) = R(H) + N(H)$. Moreover, H is a closed operator if and only if R(H) and N(H) are closed subspaces of \mathcal{H} ; and H is bounded if and only if it is closed and $\mathcal{D}(H) = \mathcal{H}$. We refer the reader to Ota's paper [25] for a treatment of unbounded projections. In addition, given two closed subspaces \mathcal{S}, \mathcal{T} such that $\mathcal{S} \cap \mathcal{T} = \{0\}$ and $\mathcal{S} + \mathcal{T}$ is dense we denote by $H_{\mathcal{S}//\mathcal{T}}$ the closed projection with range S and kernel T (here, $\mathcal{D}(H_{S//T}) = S + T$). Recall that we denote by $\tilde{\mathcal{Q}}$ the set of all (not necessarily bounded) closed projections in \mathcal{H} . In the sequel given two operators A, B the symbol $B \subseteq A$ means that A is an extension of B.

Remark 3.5. Given $T \in \mathcal{QQ}$ put $E = Q_{\overline{R(T)}/S}$ and $F = Q_{W/N(T)}$. Clearly, T = EF. By Lemma 3.3, $H_{\mathcal{W}//\mathcal{S}}$ is a closed projection. Moreover, by Corollary 3.4, $H_{W//S}$ is bounded if and only if T has closed range. In what follows, given $(E, F) \in [\mathcal{Q}\mathcal{Q}]_T$ we denote

$$H_{F,E} := H_{R(F)//N(E)}.$$

Lemma 3.6. Let $T \in \mathcal{QQ}$ and $(E, F) \in [\mathcal{QQ}]_T$, the next conditions hold:

- 1. $R(T) \subseteq \mathcal{D}(H_{F,E})$.
- 2. $N(H_{F,E}T) = N(T)$.

1. Let $y = Tx \in R(T)$ then y = Tx = EFx = EFx - Fx + Fx = $-(I-E)Fx + Fx \in N(E) + R(F) = \mathcal{D}(H_{F,E}).$

2. By the previous item $H_{F,E}T$ is well-defined and it is clear that $N(T) \subseteq$ $N(H_{F,E}T)$. On the other hand, if $H_{F,E}Tx = 0$ then $Tx \in R(T) \cap$ $N(E) \subseteq R(E) \cap N(E) = \{0\}$, i.e. $x \in N(T)$ and so $N(H_{F,E}T) = N(T)$.

Recall the concept of inner inverses of a bounded linear operator. Given $T \in L(\mathcal{H})$, the **Moore-Penrose inverse** of T, T^{\dagger} , is the unique linear extension of $(T|_{N(T)^{\perp}})^{-1}$ to $R(T) + R(T)^{\perp}$ such that $N(T^{\dagger}) = R(T)^{\perp}$. The densely defined operator T^{\dagger} fulfills the following equations, which could also be used as a definition of T^{\dagger} if we take as the domain the maximal domain for which these equations have a solution, namely $\mathcal{D}(T^{\dagger}) = R(T) + R(T)^{\perp}$:

- 1. TXT = T.
- 2. XTX = X.
- 3. $TX \subseteq P_{\overline{R(T)}}$.
- 4. $XT = P_{N(T)^{\perp}}$.

Observe that T^{\dagger} is bounded if and only if R(T) is closed. We denote by T[i,j,k,l] the set of densely defined operators that satisfy equations i,j,k,lwith $i, j, k, l \in \{1, ..., 4\}$. The elements of T[1] are usually called **inner inverses** of T. The reader is referred to the book [7] for a complete treatment on generalized inverses.

Penrose [26] and Greville [20] proved that the Moore-Penrose inverse of the product of two orthogonal projections in $\mathbb{C}^{n\times n}$ is an idempotent matrix, and conversely. Extensions to bounded linear operators can be found in [11] and [9]. Here, we analyze the case for operators in QQ.

Theorem 3.7. Let $T \in L(\mathcal{H})$. The next conditions are equivalent:

- 1. $T \in \mathcal{Q}\mathcal{Q}$.
- 2. there exists $H \in \tilde{\mathcal{Q}}$ such that THT = T and $T^*H^*T^* = T^*$.

Proof. 1 ⇒ 2. Suppose that $T \in \mathcal{QQ}$ and for $(E,F) \in [\mathcal{QQ}]_T$ consider the closed projection $H = H_{F,E}$ (see Remark 3.5). We claim that THT = T. First observe that THT is well-defined because of Lemma 3.6. Now, $THT = EFHEF = EHEF = E|_{\mathcal{D}(H)}EF = EF = T$. Similarly, since $(F^*, E^*) \in (\mathcal{QQ})_{T^*}$ and $H_{E^*,F^*} = (H_{F,E})^* = H^*$, we have that $T^*H^*T^* = T^*$. Therefore item 2 holds.

 $2\Rightarrow 1$. Suppose that there exists a closed projection H such that THT=T and $T^*H^*T^*=T^*$. Then, HTHT=HT, i.e., $(HT)^2=HT$ and since $T\in L(\mathcal{H})$ and H is closed, then HT is also closed. Moreover, as $\mathcal{D}(HT)=\mathcal{D}(T)=\mathcal{H}$ then $HT\in\mathcal{Q}$. Similarly, from $T^*=T^*H^*T^*$ we get that $H^*T^*\in\mathcal{Q}$. Hence, $(H^*T^*)^*\in\mathcal{Q}$. Now, $(H^*T^*)^*=((TH)^*)^*=\overline{TH}$ where the overline stands for the closure of TH. Therefore, $T=THT=(TH)(HT)=(\overline{TH})(HT)\in\mathcal{QQ}$.

From now on, L_{cr} stands for the set of closed range operators of $L(\mathcal{H})$.

Corollary 3.8. Let $T \in L_{cr}$. The next conditions are equivalent:

- 1. $T \in \mathcal{Q}\mathcal{Q}$.
- 2. $T[1] \cap \mathcal{Q} \neq \emptyset$.
- 3. $T^{\dagger} \in \mathcal{PQP}$.

Proof. $1 \Leftrightarrow 2$. Follows from Theorem 3.7.

 $2\Rightarrow 3$. If $Q\in T[1]\cap \mathcal{Q}$ then an easy computation shows that $T^\dagger=P_{N(T)^\perp}QP_{R(T)}$, i.e., $T^\dagger\in\mathcal{PQP}$.

$$3 \Rightarrow 2$$
. If $T^{\dagger} \in \mathcal{PQP}$ then $T^{\dagger} = P_{N(T)^{\perp}}QP_{R(T)}$, for some $Q \in \mathcal{Q}$. Then, $T = TT^{\dagger}T = TP_{N(T)^{\perp}}QP_{R(T)}T = TQT$, i.e, $Q \in T[1]$.

Notice that the previous corollary states that the Moore-Penrose inverse maps bijectively $QQ \cap L_{cr}$ onto PQP.

Corollary 3.9. Let $T \in L(\mathcal{H})$.

- 1. The following conditions are equivalent:
 - (a) $T \in \mathcal{Q}\mathcal{Q}$.
 - (b) There exists $H \in \mathcal{Q}$ such that THT = T, HTH = H and $T^*H^*T^* = T^*$.
- 2. The following conditions are equivalent:
 - (a) $T \in \mathcal{PQ}$.
 - (b) There exists $H \in \tilde{\mathcal{Q}}$ such that THT = T and $TH \subseteq P_{\overline{R(T)}}$.
 - (c) There exists $H \in \tilde{\mathcal{Q}}$ such that THT = T, HTH = H and $TH \subseteq P_{\overline{R(T)}}$.

In particular, $T \in \mathcal{PQ} \cap L_{cr}$ if and only if $\mathcal{Q} \cap T[1,2,3] \neq \emptyset$.

- 3. The following conditions are equivalent:
 - (a) $T \in \mathcal{PP}$.

(b)
$$T^{\dagger} \in \tilde{\mathcal{Q}}$$
.

- *Proof.* 1. (a) \Leftrightarrow (b). Suppose that $T \in \mathcal{QQ}$ and for $(E,F) \in [\mathcal{QQ}]_T$ consider the closed projection $H = H_{F,E}$. Clearly, HTH = HEFH = HEH = H. Moreover, by the proof of Theorem 3.7, THT = T and $T^*H^*T^* = T^*$ and so item (b) holds. The converse follows by Theorem 3.7.
 - 2. $(a)\Rightarrow (c)$. Let $T\in\mathcal{PQ}$. Then, $T=P_{\overline{R(T)}}F$ for some $F\in\mathcal{Q}$ with N(F)=N(T), i.e., $(P_{\overline{R(T)}},F)\in[\mathcal{QQ}]_T$. Let $H:=H_{F,P_{\overline{R(T)}}}$. Now, by Theorem 3.7, THT=T and HTH=H. Moreover, $TH=P_{\overline{R(T)}}FH=P_{\overline{R(T)}}H=P_{\overline{R(T)}}H=P_{\overline{R(T)}}H=P_{\overline{R(T)}}H$. Thus, item (c) holds.
 - $(c) \Rightarrow (b)$. It is trivial.
 - $(b) \Rightarrow (a)$. Let $H \in \tilde{\mathcal{Q}}$ such that THT = T and $TH \subseteq P_{\overline{R(T)}}$. By the proof of Theorem 3.7, $HT \in \mathcal{Q}$. Thus, $T = THT = THHT = P_{\overline{R(T)}}HT \in \mathcal{PQ}$.
 - 3. See [11, Theorem 6.2].

By the above corollary, if $T \in \mathcal{PP} \cap L_{cr}$ then $T^{\dagger} \in T[1] \cap \mathcal{Q}$. However T^{\dagger} is not, in general, the unique element in $T[1] \cap \mathcal{Q}$ if $T \in \mathcal{PP}$. For example, an easy computation shows that $T^{\dagger} + P_{R(T)^{\perp} \cap N(T)}$ is also in $T[1] \cap \mathcal{Q}$. Observe that $R(T)^{\perp} \cap N(T) = \{0\}$ if and only if T admits a unique factorization in \mathcal{PP} (see [11, Corollary 3.8]).

Corollary 3.10. Let $T \in L(\mathcal{H})$ with closed range. If there exists $T' \in T[1]$ such that $(T')^2 = I$ then $T^2 \in \mathcal{QQ}$.

Proof. If T = TT'T then $E := TT' \in \mathcal{Q}$ and $F := T'T \in \mathcal{Q}$. Therefore, as $(T')^2 = I$, $T^2 = EF \in \mathcal{QQ}$.

Corollary 3.11. Let $T \in L(\mathcal{H})$ with closed range. If $R(T) = R(T^*)$ and $\dim R(T) \leq \dim N(T)$ then $T \in \mathcal{QQ}$.

Proof. By Corollary 3.9, it suffices to prove that $T^{\dagger} = P_{R(T)}EP_{R(T)}$ for some $E \in \mathcal{Q}$. Now, as dim $R(T) \leq \dim N(T) = \dim R(T)^{\perp}$ then there exists $J: R(T) \to R(T)^{\perp}$ such that $J^*J = P_{R(T)}$. Therefore, considering the matrix representation induced by the Hilbert space decomposition $\mathcal{H} = R(T) \oplus R(T)^{\perp}$ we can define $E := \begin{pmatrix} T^{\dagger} & (T^{\dagger} - (T^{\dagger})^2)J^* \\ J & J(I - T^{\dagger})J^* \end{pmatrix} \begin{pmatrix} R(T) \\ R(T)^{\perp} \end{pmatrix}$. It is easy to show that $E = E^2$, i.e., $E \in \mathcal{Q}$ and, clearly, $T^{\dagger} = P_{R(T)}EP_{R(T)} \in \mathcal{PQP}$. Hence, by Corollary 3.9, $T \in \mathcal{QQ}$. □

By the previous corollary, if \mathcal{H} is separable then every closed range normal operator $T \in L(\mathcal{H})$ with infinite dimensional kernel belongs to \mathcal{QQ} .

From the proof of Corollary 3.9 it follows that, for $T \in \mathcal{QQ}$ and $(E, F) \in [\mathcal{QQ}]_T$ it holds that $H_{F,E} \in \{H \in \tilde{\mathcal{Q}} : H \in T[1,2] \text{ and } H^* \in T^*[1]\}$. The

next result shows that this property fully describes $[\mathcal{QQ}]_T$. For this, given $T \in \mathcal{QQ}$ define the mapping

$$\Phi: [\mathcal{Q}\mathcal{Q}]_T \to \tilde{\mathcal{Q}}, \ \Phi((E,F)) = H_{F,E}.$$

Theorem 3.12. Let $T \in \mathcal{QQ}$, then

$$\Phi([\mathcal{Q}\mathcal{Q}]_T) = \left\{ H \in \tilde{\mathcal{Q}} : H \in T[1,2] \text{ and } H^* \in T^*[1] \right\}.$$

Proof. If $(E, F) \in [\mathcal{QQ}]_T$ then, by the proof of Corollary 3.9, we have that $H := H_{F,E} \in \tilde{\mathcal{Q}} \cap T[1, 2]$ and $H^* \in T^*[1]$.

Conversely, let $H:=H_{\mathcal{W}//\mathcal{S}}\in \tilde{\mathcal{Q}}$ such that $H\in T[1,2]$ and $H^*\in T^*[1]$. Let us define $E:=\overline{TH}$ and F:=HT. By the proof of the implication $2\Rightarrow 1$ in Theorem 3.7, we have that $E,F\in\mathcal{Q}$ and T=EF. Let us prove that $(E,F)\in [\mathcal{QQ}]_T$ and $H_{F,E}=H$ or, equivalently, that $E=Q_{\overline{R(T)}//\mathcal{S}}$ and $F=Q_{\mathcal{W}//N(T)}$.

First, as THT=T then $N(T)\subseteq N(HT)=N(F)\subseteq N(T)$, i.e., N(F)=N(T). On the other hand, from HTH=H, we have that $R(F)=R(QT)\subseteq R(H)=R(HTH)\subseteq R(HT)=R(F)$, i.e., $R(F)=R(H)=\mathcal{W}$. Thus, $F=HT=H_{R(H)//N(T)}=Q_{\mathcal{W}//N(T)}$. Similarly, as $T^*H^*T^*=T^*$ and $H^*T^*H^*=H^*$ then $H^*T^*=H_{R(H^*)//N(T^*)}$. Notice that $H^*T^*H^*=H^*$ since H=HTH and $R(T^*)\subseteq \mathcal{D}(H^*)$ (because $T^*=T^*H^*T^*$). Therefore, $E=\overline{TH}=(H^*T^*)^*=Q_{R(H^*)//N(T^*)}^*=Q_{\overline{R(T)}//N(H)}^*=Q_{\overline{R(T)}//S}^*$ as desired. The proof is complete.

Corollary 3.13. Let $T \in QQ$ with closed range. Then

$$\Phi([\mathcal{Q}\mathcal{Q}]_T) = \{Q \in \mathcal{Q} : Q \in T[1,2]\}.$$

4. Split operators in QQ

If $T \in \mathcal{PP}$ then $R(T) + N(T) = \mathcal{H}$, see [11, Theorem 3.2]. Moreover, $T \in \mathcal{PP}$ has closed range if and only if $\overline{R(T)} + N(T) = \mathcal{H}$. However, these properties do not hold, in general, for operators in \mathcal{QQ} . For instance, $T = \mathcal{QQ}$.

$$\frac{1}{2} \begin{pmatrix} -1 & 1 & 2 \\ -1 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \frac{1}{3} \begin{pmatrix} -1 & 1 & 2 \\ -2 & 2 & 4 \\ -1 & 1 & 2 \end{pmatrix} \in \mathcal{QQ} \text{ and } R(T) \cap N(T) =$$

 $R(T) = \text{gen}\{(1,1,0)^T\}$. Thus, $R(T) + N(T) \neq \mathcal{H}$. On the other hand, consider a non-closed range positive operator T with $\dim N(T) = \dim \overline{R(T)}$. Then, by Examples 2.1, $T \in \mathcal{QQ}$ and $\overline{R(T)} + N(T) = \mathcal{H}$, but R(T) is not closed. The aim of this section is to study the operators $T \in \mathcal{QQ}$ such that $\overline{R(T)} + N(T) = \mathcal{H}$.

Proposition 4.1. Let $T \in \mathcal{QQ}$ and $(E,F) \in [\mathcal{QQ}]_T$. Then, $N(E+F-I) = \overline{R(T)} \cap N(T)$ and $\overline{R(E+F-I)} = \overline{R(T)} + N(T)$.

Proof. An easy computation shows that, $N(E-F) = N(E) \cap N(F) + R(E) \cap R(F)$ for all $E, F \in \mathcal{Q}$. Therefore, if $(E, F) \in [\mathcal{Q}\mathcal{Q}]_T$ then, by Lemma 3.3, $N(E) \cap R(F) = \{0\}$ and so $N(E+F-I) = N(E-(I-F)) = N(E) \cap R(F) + R(E) \cap N(F) = R(E) \cap N(F) = \overline{R(T)} \cap N(T)$. Analogously, but considering $(F^*, E^*) \in [\mathcal{Q}\mathcal{Q}]_{T^*}$, we have that $N(E^* + F^* - I) = \overline{R(T^*)} \cap N(T^*)$ or, equivalently, $\overline{R(E+F-I)} = \overline{R(T)} + N(T)$.

Corollary 4.2. Let $T \in \mathcal{QQ}$ and $(E, F) \in [\mathcal{QQ}]_T$. Then,

- 1. $\overline{R(T)} \cap N(T) = \{0\}$ if and only if E + F I is injective.
- 2. $R(T) + N(T) = \mathcal{H}$ if and only if E + F I is an injective operator with dense range.
- 3. $\overline{R(T)} + N(T) = \mathcal{H}$ if and only if E + F I is injective and $R(E) + R(I F) = \mathcal{H}$.
- 4. $R(T) + N(T) = \mathcal{H}$ if and only E + F I is invertible.

Proof. Items 1, 2 and 3 follow by Proposition 4.1. Let us prove item 4. Assume that $R(T) + N(T) = \mathcal{H}$. Notice that this implies that R(T) is closed. Now, as $R(T) \cap N(T) = \{0\}$ then, by item 1, E + F - I is injective. It remains to show that $R(E + F - I) = \mathcal{H}$. Now, since $R(E) \cap R(F - I) = R(T) \cap N(T) = \{0\}$ and $N(E) + N(F - I) = N(E) + R(F) = \mathcal{H}$ because of Corollary 3.4 then, by [5, Theorem 2.10], $R(E + F - I) = R(E) + R(F - I) = R(T) + N(T) = \mathcal{H}$.

Conversely, if E+F-I is invertible then, by item $1, R(E)\cap R(I-F)=R(T)\cap N(T)=\{0\}$. Moreover, as $R(E+F-I)=\mathcal{H}$ then $R(E)+R(I-F)=\mathcal{H}$. Thus, $\overline{R(T)}+N(T)=\mathcal{H}$. It remains to show that R(T) is closed. For this, as $\mathcal{H}=R(E+F-I)=R(E)+R(I-F)$, applying again [5, Theorem 2.10], we have that $N(E)+N(I-F)=\mathcal{H}$. Therefore, by Corollary 3.4, T has closed range as desired.

As we highlighted previously, there is an identity which characterizes \mathcal{PP} , namely $TT^*T=T^2$. We wonder if there exist a corresponding identity for \mathcal{QQ} . A first approach in this direction is the next result:

Proposition 4.3. If $T \in QQ$ then there exists $X \in L(\mathcal{H})$ such that $TXT = T^2$ and $XTX = X^2$.

Proof. Let
$$T=EF\in\mathcal{QQ}$$
. Define $X:=FE$. Then $TXT=EFFEEF=EFEF=T^2$ and $XTX=FEEFFE=FEFE=X^2$. \square

Our next step is to investigate whether the converse of Proposition 4.3 holds. In the next result we show that this happens if T satisfies that $\overline{R(T)} + N(T) = \mathcal{H}$.

Proposition 4.4. Let $T \in L(\mathcal{H})$ such that $\overline{R(T)} + N(T) = \mathcal{H}$. Then, $T \in \mathcal{QQ} \cap L_{cr}$ if and only if there exists $X \in L(\mathcal{H})$ such that $TXT = T^2$, $XTX = X^2$ and $\overline{R(X)} + N(X) = \mathcal{H}$.

Proof. Let $T \in \mathcal{QQ} \cap L_{cr}$ and write T = EF for some $(E,F) \in [\mathcal{QQ}]_T$. Define X = FE. It follows from Proposition 4.3 that $TXT = T^2$ and $XTX = X^2$. We claim that R(X) = R(F) and N(X) = N(E) and so, by Corollary 3.4, $\overline{R(X)} + N(X) = \mathcal{H}$. In fact, $R(X) = R(FE) = FR(E) = F(R(E) + N(F)) = F(R(T) + N(T)) = F(\mathcal{H}) = R(F)$ and $N(X) = N(FE) = N(E) + E^{-1}(N(F)) = N(E) + E^{-1}(N(F)) = N(E) + E^{-1}(\{0\}) = N(E)$.

Conversely, let $X \in L(\mathcal{H})$ such that $TXT = T^2$, $XTX = X^2$ and $\overline{R(X)} + N(X) = \mathcal{H}$. First, let us prove that $T \in \mathcal{QQ}$. For this, notice that an easy computation on $XTX = X^2$ implies that $P_{N(X)^{\perp}}TP_{\overline{R(X)}} = P_{N(X)^{\perp}}P_{\overline{R(X)}} \in \mathcal{PP}$. From this, and since $\overline{R(X)} + N(X) = \mathcal{H}$ we have that $N(X)^{\perp} = R(P_{N(X)^{\perp}}P_{\overline{R(X)}}) = R(P_{N(X)^{\perp}}TP_{\overline{R(X)}}) = P_{N(X)^{\perp}}R(TP_{\overline{R(X)}})$. Therefore, $\mathcal{H} = R(TP_{\overline{R(X)}}) + N(X)$ and so $\mathcal{H} = R(T) + N(X)$. Moreover, $R(T) \cap N(X) = \{0\}$. Indeed, if $y = Tx \in R(T) \cap N(X)$ then $0 = TXTx = T^2x$, i.e., $y = Tx \in R(T) \cap N(T) = \{0\}$. Therefore, $\mathcal{H} = R(T) + N(X)$. Notice that this implies that $T \in \mathcal{L}_{cr}$. Similarly, since $TXT = T^2$ and $R(T) + N(T) = \mathcal{H}$ we obtain that $\mathcal{H} = R(X) + N(T)$ (hence, $X \in \mathcal{L}_{cr}$). Summarizing, we have that $P_{N(X)^{\perp}}TP_{R(X)} = P_{N(X)^{\perp}}P_{R(X)} \in \mathcal{PP}$, $\mathcal{H} = R(T) + N(X)$ and $\mathcal{H} = R(X) + N(T)$. Therefore, by Proposition 2.5, $T \in \mathcal{QQ}$.

Finally, we present a complement to the characterization of QQ for matrices due to Ballantine. In fact, he proved the next result:

Theorem 4.5. Let $A \in \mathbb{C}^{n \times n}$. Then, A is a product of k idempotent matrices if and only if dim $R(A - I) \leq k \dim N(A)$.

By Ballantine's result we obtain the following:

Proposition 4.6. Let $T \in \mathbb{C}^{n \times n}$. If there exists $X \in \mathbb{C}^{n \times n}$ such that $TXT = T^2$, $XTX = X^2$ then T is a product of 4 idempotent matrices.

Proof. By Theorem 4.5, it suffices to prove that $\dim R(T-I) \leq 4 \dim N(T)$. First, if $XTX = X^2$ then $T = I + Z_1 + Z_2$ for some $Z_1, Z_2 \in \mathbb{C}^{n \times n}$ such that $XZ_1 = Z_2X = 0$. Thus, $R(T-I) = R(Z_1 + Z_2) \subseteq R(Z_1) + R(Z_2)$. Now, $R(Z_1) \subseteq N(X)$, so $\dim R(Z_1) \leq \dim N(X)$, and $R(Z_2^*) \subseteq N(X^*)$, so $\dim R(Z_2) = \dim R(Z_2^*) \leq \dim N(X^*) = \dim N(X)$. Therefore,

$$\dim R(T-I) \le \dim R(Z_1) + \dim R(Z_2) \le 2\dim N(X). \tag{4.1}$$

On the other hand, as $TXT = T^2$ then $X = I + W_1 + W_2$ for some $W_1, W_2 \in \mathbb{C}^{n \times n}$ such that $TW_1 = W_2T = 0$. Hence, notice that $N(X) \subseteq R(W_1 + W_2)$. Therefore,

$$\dim N(X) \le \dim R(W_1 + W_2) \le \dim R(W_1) + \dim R(W_2) \le 2 \dim N(T),$$
(4.2)

where the last inequality follows since dim $R(W_1)$, dim $R(W_2) \leq \dim N(T)$ because $TW_1 = W_2T = 0$. Finally, from (4.1) and (4.2) we get that dim $R(T - I) \leq 4 \dim N(T)$, as desired.

Corollary 4.7. Let $T \in \mathbb{C}^{n \times n}$. If there exists $X \in \mathbb{C}^{n \times n}$ such that $XTX = X^2$ and dim $N(X) \leq \dim N(T)$ then $T \in \mathcal{QQ}$.

Proof. Following the proof of Proposition 4.6 we get inequality (4.1), i.e., $\dim R(T-I) \leq 2 \dim N(X)$. Now, since $\dim N(X) \leq \dim N(T)$, we obtain that $\dim R(T-I) < 2 \dim N(T)$ and so $T \in \mathcal{QQ}$.

References

- [1] J. Antezana, M. L. Arias, G. Corach, On some factorizations of operators, Linear Algebra Appl., in press.
- [2] J. Antezana, G. Corach, D. Stojanoff, Bilateral shorted operators and parallel sums, Linear Algebra Appl. 414 (2006), 570-588.
- [3] M.L. Arias, G. Corach, M.C. Gonzalez, Generalized inverses and Douglas equations, Proc. Amer. Math. Soc. 136 (2008), 3177-3183.
- [4] M.L. Arias, G. Corach, M. C. Gonzalez, Products of projections and positive operators, Linear Algebra Appl. 439 (2013), 1730-1741.
- [5] M. L. Arias, G. Corach, A. Maestripieri, Range additivity, shorted operator and the Sherman-Morrison-Woodbury formula, Linear Algebra Appl. 467 (2015), 86-99.
- [6] C.S. Ballantine, Products of idempotent matrices, Linear Algebra Appl. 19 (1978), 81-86.
- [7] A. Ben-Israel, T. N. E. Greville; Generalized inverses. Theory and applications. Second edition. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 15. Springer-Verlag, New York, 2003.
- [8] A. Böttcher, I.M. Spitkovsky, A gentle guide to the basics of two projections theory, Linear Algebra Appl. 432 (2010), 1412-1459.
- [9] G. Corach, M. C. Gonzalez and A. Maestripieri, Unbounded symmetrizable idempotents, Linear Algebra Appl. 437 (2012), 659-674.
- [10] G. Corach, A. Maestripieri, Polar decompositions of oblique projections, Linear Algebra Appl. 433 (2010), 511-519.
- [11] G. Corach and A. Maestripieri, Products of orthogonal projections and polar decompositions, Linear Algebra Appl. 434 (2011), 1594-1609.
- [12] C. Davis, Separation of two linear subspaces, Acta Sci. Math. Szeged 19 (1958), 172-187.
- [13] R.J.H. Dawlings, The idempotent generated subsemigroup of the semigroup of continuous endomorphisms of a separable Hilbert space, Proc. Roy. Sot. Edinburgh 94A (1983), 351-360.
- [14] F. Deutsch, The angles between subspaces of a Hilbert space, in S.P. Singh (Ed.), Approximation Theory, Wavelets and Applications, Kluwer, Netherlands (1995), 107-130.
- [15] J. Dixmier, Position relative de deux variétés linéaires fermées dans un espace de Hilbert (French) Revue Sci. 86 (1948), 387-399.
- [16] D. Drivaliaris, N. Yannakakis, Subspaces with a common complement in a separable Hilbert space, Integral Equations Operator Theory 62 (2008), 159-167.

- [17] R. G. Douglas, On majorization, factorization and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413-416.
- [18] H.W. Engl, M.Z. Nashed, New extremal characterizations of generalized inverses of linear operators, J. Math. Anal. Appl., 82 (2) (1981), 566-586.
- [19] J. Giol, Segments of bounded linear idempotents on a Hilbert space, J. Funct. Anal. 229 (2005), 405-423.
- [20] T.N.E. Greville, Solutions of the matrix equation XAX = X, and relations between oblique and orthogonal projectors, SIAM J. Appl. Math. 26 (1974), 828-832.
- [21] P.R. Halmos, Two subspaces, Trans. Amer. Math. Soc. 144 (1969), 381-389.
- [22] J. R. Holub, Wiener-Hopf operators and projections II, Math. Japonica 25 (1980), 251-253.
- [23] K.H. Kuo, P.Y. Wu, Factorization of matrices into partial isometries, Proc. Amer. Math. Soc. 105 (1989), 263-272.
- [24] M. Lauzon, S. Treil, Common complements of two subspaces of a Hilbert space, J. Funct. Anal. 212 (2004), 500-512.
- [25] S. Ota, Unbounded nilpotents and idempotents, J. Math. Anal. Appl. 132 (1988), 300-308.
- [26] R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51 (1955), 406-413.
- [27] H. Radjavi, J. P. Williams, Products of self-adjoint operators, Michigan Math. J. 16 (1969), 177-185.
- [28] Z. Sebestyén, Characterization of subprojection suboperators. Acta Math. Hungar. 56 (1990), 115-119.
- [29] P. Y. Wu, The operator factorization problems, Linear Algebra Appl. 117 (1989), 35-63.

M. Laura Arias, Gustavo Corach and Alejandra Maestripieri

Instituto Argentino de Matemática "Alberto P. Calderón", CONICET

Saavedra 15 Piso 3

(1083) Buenos Aires

Argentina

and

Universidad de Buenos Aires, Facultad de Ingeniería, Dpto. de Matemática

Av. Paseo Colon 850

(1063) Buenos Aires

Argentina

e-mail: lauraarias@conicet.gov.ar

e-mail: gcorach@fi.uba.ar e-mail: amaestri@fi.uba.ar