Oblique projections and abstract splines

G. Corach *, A. Maestripieri and D. Stojanoff †

Abstract

Given a closed subspace S of a Hilbert space H and a bounded linear operator $A \in L(H)$ which is positive, consider the set of all A-selfadjoint projections onto S

$$\mathcal{P}(A,\mathcal{S}) = \{ Q \in L(\mathcal{H}) : Q^2 = Q , \quad Q(\mathcal{H}) = \mathcal{S} , \quad AQ = Q^*A \}.$$

In addition, if \mathcal{H}_1 is another Hilbert space, $T: \mathcal{H} \to \mathcal{H}_1$ is a bounded linear operator such that $T^*T = A$ and $\xi \in \mathcal{H}$, consider the set of (T, \mathcal{S}) spline interpolants to ξ :

$$sp\ (T, \mathcal{S}, \xi) = \{ \eta \in \xi + \mathcal{S} : ||T\eta|| = \min_{\sigma \in \mathcal{S}} ||T(\xi + \sigma)|| \}.$$

A strong relationship exists between $\mathcal{P}(A,\mathcal{S})$ and $sp\ (T,\mathcal{S},\xi)$. In fact, $\mathcal{P}(A,\mathcal{S})$ is not enpty if and only if $sp\ (T,\mathcal{S},\xi)$ is not empty for every $\xi\in\mathcal{H}$. In this case, for any $\xi\in\mathcal{H}\setminus\mathcal{S}$ it holds

$$sp(T, S, \xi) = \{(1 - Q)\xi : Q \in \mathcal{P}(A, S)\}$$

and for any $\xi \in \mathcal{H}$ the unique vector of $sp(T, \mathcal{S}, \xi)$ with minimal norm is $(1 - P_{A,\mathcal{S}})\xi$, where $P_{A,\mathcal{S}}$ is a distinguished element of $\mathcal{P}(A,\mathcal{S})$. These results offer a generalization to arbitrary operators of several theorems by de Boor, Atteia, Sard and others, which hold for closed range operators.

1 Introduction

Given two Hilbert spaces \mathcal{H} and \mathcal{H}_1 , $T \in L(\mathcal{H}, \mathcal{H}_1)$, $\mathcal{S} \subseteq \mathcal{H}$ a closed subspace and $\xi \in \mathcal{H}$, an abstract spline or a (T, \mathcal{S}) -spline interpolant to ξ is any element of the set

$$sp\ (T, \mathcal{S}, \xi) = \{ \eta \in \xi + \mathcal{S} : ||T\eta|| = \min_{\sigma \in \mathcal{S}} ||T(\xi + \sigma)|| \}.$$

Observe that $A = T^*T = |T|^2$, as a positive bounded operator on \mathcal{H} , defines a semiinner product $\langle \cdot, \cdot \rangle_A : \mathcal{H} \times \mathcal{H} \to \mathbb{C}$ by $\langle \xi, \eta \rangle_A = \langle A\xi, \eta \rangle$, $\xi, \eta \in \mathcal{H}$ and a corresponding seminorm $\| \cdot \|_A : \mathcal{H} \to \mathbb{R}^+$ given by $\| \eta \|_A = \langle \eta, \eta \rangle_A^{1/2} = \langle A\eta, \eta \rangle_A^{1/2} = \| T\eta \|$. Thus, if for any $\eta \in \mathcal{H}$ we consider $d_A(\eta, \mathcal{S}) = \inf_{\sigma \in \mathcal{S}} \| \eta + \sigma \|_A$, then

$$sp (T, \mathcal{S}, \xi) = \{ \eta \in \xi + \mathcal{S}; \|\eta\|_A = d_A(\xi, \mathcal{S}) \}.$$

If A is an invertible operator, then \langle, \rangle_A is a scalar product, $(\mathcal{H}, \langle, \rangle_A)$ is a Hilbert space and, by the projection theorem, $d_A(\xi, \mathcal{S}) = ||(I - P_{A,\mathcal{S}})\xi||_A$ and $sp(T, \mathcal{S}, \xi) = \{(I - P_{A,\mathcal{S}})\xi\}$, where $P_{A,\mathcal{S}}$ is unique orthogonal projection onto \mathcal{S} which is orthogonal

^{*}Partially supported by CONICET (PIP 4463/96), Universidad de Buenos Aires (UBACYT TX92 and TW49

[†]Partially supported by CONICET (PIP 4463/96), Universidad de Buenos Aires (UBACYT TW49) and UNLP

to the inner product \langle, \rangle_A . However, if A is not invertible then $\|\cdot\|_A$ is or a seminorm or an incomplete norm and we can not use the projection theorem unless we complete the quotient $\mathcal{H}/\ker A$. One of the main goals of this paper is to get a simpler way of describing the set sp (T, \mathcal{S}, ξ) .

We start with a positive bounded linear operator A on a Hilbert space \mathcal{H} and a closed subspace \mathcal{S} of \mathcal{H} . The subspace $\mathcal{S}^{\perp_A} = \{\xi : \langle A\xi, \eta \rangle = 0 \ \forall \eta \in \mathcal{S}\}$ is called the A – orthogonal companion of \mathcal{S} . Notice the identities

$$\mathcal{S}^{\perp_A} = A^{-1}(\mathcal{S}^{\perp}) = A(\mathcal{S})^{\perp} = \ker(PA). \tag{1}$$

Instead of defining adjoint operators with respect to \langle , \rangle_A , we restrict our discussion to A-selfadjoint operators, i.e. $W \in L(\mathcal{H})$ such that $AW = W^*A$. Notice that any such W satisfies $\langle W\xi, \eta \rangle_A = \langle \xi, W\eta \rangle_A, \xi, \eta \in \mathcal{H}$.

The pair (A, \mathcal{S}) is said to be *compatible* if there exists a projection $Q \in L(\mathcal{H})$ such that $Q(\mathcal{H}) = \mathcal{S}$ and $AQ = Q^*A$. The main result in this paper is the description of the relationship between the set

$$\mathcal{P}(A,\mathcal{S}) = \{ Q \in \mathcal{Q} : R(Q) = \mathcal{S}, AQ = Q^*A \}$$

and $sp(T, \mathcal{S}, \xi)$, where $T: \mathcal{H} \to \mathcal{H}_1$ is any bounded linear operator such that $T^*T = A$. A relevant point here is that this method allows to tackle the case of operators with non closed range. Thus, several results by Sard [17], Atteia [3], Golomb [10], Shekhtman [18], de Boor [4], Izumino [12], Delvos [8], Deutsch [7] are generalized to any bounded linear operators T.

If (A, \mathcal{S}) is compatible, there exists a distinguished element $P_{A,\mathcal{S}} \in \mathcal{P}(A,\mathcal{S})$. The study of the map $(A, \mathcal{S}) \to P_{A,\mathcal{S}}$ was initiated by Pasternak-Winiarski [14] at least for invertible A. A geometrical description of that map can be found in [2]. In [11] and [6], the inversibility hypothesis on A was removed, opening, in that way, the posibility that $\mathcal{P}(A,\mathcal{S})$ be empty or have many elements. This induces the notion of compatibility of a pair (A, \mathcal{S}) . This paper is mainly devoted to explore the relationship of the compatibility of (A, \mathcal{S}) with the existence of spline interpolants for every $\xi \in$ \mathcal{H} . Section 2 contains a short study on compatibility of a pair (A, \mathcal{S}) . If (A, \mathcal{S}) is compatible, the properties of the distinguished element $P_{A,S} \in \mathcal{P}(A,S)$ are described. In section 3 we show that (A, \mathcal{S}) is compatible if and only if $sp(T, \mathcal{S}, \xi)$ is not empty for any $\xi \in \mathcal{H}$ and that $sp(T, \mathcal{S}, \xi) = \{(1 - Q)\xi : Q \in \mathcal{P}(A, \mathcal{S})\}$, for any $\xi \in \mathcal{H} \setminus \mathcal{S}$. Moreover, the vector of sp (T, \mathcal{S}, ξ) with minimal norm is exactly $(1 - P_{A,\mathcal{S}})\xi$. In section 4 we present some characterizations of $P_{A,S}$ which are useful for the study of the convergence of $\{P_{A,\mathcal{S}_n}\xi\}$ if (A,\mathcal{S}_n) is compatible for every $n\in\mathbb{N}$ and \mathcal{S}_n decreases to 0. This study is the goal of secction 5. Finally, section 6 includes several examples of compatibility and spline projections.

In this paper $L(\mathcal{H})$ is the algebra of all linear bounded operators on the Hilbert space \mathcal{H} and $L(\mathcal{H})^+$ is the subset of $L(\mathcal{H})$ of all selfadjoint positive (i.e. non negative definite) operators. For every $C \in L(\mathcal{H})$ its range is denoted by R(C). If R(C)is closed, then C^{\dagger} denotes the Moore-Penrose pseudoinverse of C. The orthogonal projections onto a closed subspace S is denoted by P_S . The direct sum of subspaces S and T is denoted $S \dotplus T$. Finally, $S \ominus T$ denotes $S \cap T^{\perp}$.

2 A-selfadjoint projections

Throughout this paper S denotes a closed subspace of \mathcal{H} and A is a fixed operator in $L(\mathcal{H})^+$. Recall that $S^{\perp_A} = A^{-1}(S^{\perp})$. It is easy to see that a projection Q belongs to $\mathcal{P}(A,S)$ if and only if R(Q) = S and $\ker Q \subseteq A^{-1}(S^{\perp})$. Then

the pair
$$(A, \mathcal{S})$$
 is compatible if and only if $\mathcal{S} + A^{-1}(\mathcal{S}^{\perp}) = \mathcal{H}$. (2)

In this case, $\mathcal{P}(A,\mathcal{S})$ has a single element if and only if $\ker A \cap \mathcal{S} = \{0\}$, because

$$S \cap A^{-1}(S^{\perp}) = \ker A \cap S. \tag{3}$$

If (A, \mathcal{S}) is compatible, then there is a distinguished element in $\mathcal{P}(A, \mathcal{S})$, namely the unique projection $P_{A,\mathcal{S}}$ onto \mathcal{S} with kernel $A^{-1}(\mathcal{S}^{\perp}) \ominus (\ker A \cap \mathcal{S})$. The elements of $\mathcal{P}(A, \mathcal{S})$ can be parametrized by the set of relative suplements of $\ker A \cap \mathcal{S}$ into $A^{-1}(\mathcal{S}^{\perp})$.

The set $\mathcal{P}(A, \mathcal{S})$ can also be characterized using the matrix operator decomposition induced by the orthogonal projection $P = P_{\mathcal{S}}$. Under this representation A has a matrix form

$$A = \begin{pmatrix} a & b \\ b^* & c \end{pmatrix}, \tag{4}$$

where $a \in L(\mathcal{S})^+$, $b \in L(\mathcal{S}^\perp, \mathcal{S})$ and $c \in L(\mathcal{S}^\perp)^+$. Observe that $P = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $PA = \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}$ and $PAP = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$. Every projection Q with range \mathcal{S} has matrix form $Q = \begin{pmatrix} 1 & x \\ 0 & 0 \end{pmatrix}$ for some $x \in L(\mathcal{S}^\perp, \mathcal{S})$. It is easy to see that $Q \in \mathcal{P}(A, \mathcal{S})$ if and only if x satisfies the equation ax = b. Then

$$\mathcal{P}(A,\mathcal{S}) = \{ Q = \begin{pmatrix} 1 & x \\ 0 & 0 \end{pmatrix} : x \in L(\mathcal{S}^{\perp},\mathcal{S}) \text{ and } ax = b \}$$
 (5)

Notice that equation (5) implies that, if (A, S) is compatible, then $R(b) \subseteq R(a)$. As a corollary of a well known theorem of R. G. Douglas, it can be shown that these two conditions are, indeed, equivalent. First, we recall Douglas' theorem [9]:

Theorem 2.1 Let $B, C \in L(\mathcal{H})$. Then the following conditions are equivalent:

- 1. $R(B) \subseteq R(C)$.
- 2. There exists a positive number λ such that $BB^* \leq \lambda CC^*$.
- 3. There exists $D \in L(\mathcal{H})$ such that B = CD.

Moreover, there exists a unique operator D which satisfies the conditions

$$B = CD$$
, $\ker D = \ker B$ and $R(D) \subseteq \overline{R(C^*)}$.

In this case, $||D||^2 = \inf\{\lambda : BB^* \leq \lambda CC^*\}$; D is called the **reduced** solution of the equation CX = B. If R(C) is closed, then $D = C^{\dagger}B$.

Corollary 2.2 Let $A \in L(\mathcal{H})^+$ and $S \subseteq \mathcal{H}$ a closed subspace. If A has matrix form as in (4), then (A, S) is compatible if and only if $R(b) \subseteq R(a)$.

The next theorem describes some properties of $\mathcal{P}(A,\mathcal{S})$ and $P_{A,\mathcal{S}}$. The norm of $P_{A,\mathcal{S}}$ will be computed in section 5.

Theorem 2.3 Let $A \in L(\mathcal{H})^+$ with matrix form (4), such that the pair (A, \mathcal{S}) is compatible.

1. The distinguished projection $P_{A,S} \in \mathcal{P}(A,S)$ has matrix form

$$P_{A,\mathcal{S}} = \begin{pmatrix} 1 & d \\ 0 & 0 \end{pmatrix},$$

where $d \in L(S^{\perp}, S)$ is the reduced solution of the equation ax = b.

2. $\mathcal{P}(A,\mathcal{S})$ is an affine manifold which can be parametrized as

$$\mathcal{P}(A,\mathcal{S}) = P_{A,\mathcal{S}} + L(\mathcal{S}^{\perp}, \mathcal{N}),$$

where $\mathcal{N} = A^{-1}(S^{\perp}) \cap \mathcal{S} = \ker A \cap \mathcal{S}$ and $L(\mathcal{S}^{\perp}, \mathcal{N})$ is viewed as a subspace of $L(\mathcal{H})$. A matrix representation of this parametrization is

$$\mathcal{P}(A,\mathcal{S}) \ni Q = P_{A,\mathcal{S}} + z = \begin{pmatrix} 1 & 0 & d \\ 0 & 1 & z \\ 0 & 0 & 0 \end{pmatrix} \begin{matrix} \mathcal{S} \ominus \mathcal{N} \\ \mathcal{N} \\ \mathcal{S}^{\perp} \end{matrix} . \tag{6}$$

- 3. $P_{A,S}$ has minimal norm in $\mathcal{P}(A,S)$, i.e. $||P_{A,S}|| = \min\{ ||Q|| : Q \in \mathcal{P}(A,S) \}$. Proof.
 - 1. If $Q = \begin{pmatrix} 1 & d \\ 0 & 0 \end{pmatrix}$, then $Q \in \mathcal{P}(A, \mathcal{S})$ and $\ker Q \subseteq A^{-1}(\mathcal{S}^{\perp})$. Since $P_{A,\mathcal{S}}$ is characterized by the properties $R(P_{A,\mathcal{S}}) = \mathcal{S}$ and $\ker P_{A,\mathcal{S}} = A^{-1}(\mathcal{S}^{\perp}) \ominus \mathcal{N}$ then, in order to show that $Q = P_{A,\mathcal{S}}$ it suffices to prove that $\ker Q \subseteq \mathcal{N}^{\perp}$. Let $\xi \in \ker Q$ and write $\xi = \xi_1 + \xi_2$ with $\xi_1 \in \mathcal{S}$ and $\xi_2 \in \mathcal{S}^{\perp}$. Then $0 = Q\xi = \xi_1 + d\xi_2$. If $\eta \in \mathcal{N}$, then $\langle \xi, \eta \rangle = \langle \xi_1, \eta \rangle = -\langle d\xi_2, \eta \rangle = 0$, because, by Theorem 2.1, $R(d) \subseteq \overline{R(a)}$ and, as an operator in $L(\mathcal{S})$, $\ker a = \mathcal{S} \cap \ker PAP = \mathcal{S} \cap \ker A = \mathcal{N}$.
 - 2. Let $Q = \begin{pmatrix} 1 & y \\ 0 & 0 \end{pmatrix}$ with $y \in L(\mathcal{S}^{\perp}, \mathcal{S})$ and let $d \in L(\mathcal{S}^{\perp}, \mathcal{S})$ be the reduced solution of the equation ax = b. Then $Q \in \mathcal{P}(A, \mathcal{S})$ if and only if ay = b. Therefore, if

z = y - d, then $Q \in \mathcal{P}(A, \mathcal{S})$ if and only if $Q = P_{A,\mathcal{S}} + z$ and $R(z) \subseteq \ker a = \mathcal{N}$. Concerning the matrix representation (6), recall that $R(d) \subseteq \overline{R(a)} = (\ker a)^{\perp} = \mathcal{S} \ominus \mathcal{N}$. Therefore

$$Q = P_{A,\mathcal{S}} + z = \begin{pmatrix} 1 & 0 & d \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix} \stackrel{\mathcal{S} \ominus \mathcal{N}}{\mathcal{S}^{\perp}}.$$

3. If $Q \in \mathcal{P}(A, \mathcal{S})$ has the matrix form given in equation (6), then

$$||Q||^2 = ||QQ^*|| = 1 + \left\| \begin{pmatrix} 0 & 0 & d \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix} \right\|^2 \ge 1 + ||d||^2 = ||P_{A,S}||^2.$$

Remark 2.4 Under additional hypothesis on A, another characterizations of compatibility can be used. We mention a sample of these, taken from [6]:

- 1. If A is injective then the following conditions are equivalent:
 - (a) The pair (A, \mathcal{S}) is compatible.
 - (b) $S^{\perp} \subseteq R(A + \lambda(1 P))$ for some (and then for any) $\lambda > 0$.
 - (c) $P(\overline{A(S)}) = S$.
- 2. If A has closed range then the following conditions are equivalent:
 - (a) The pair (A, \mathcal{S}) is compatible.
 - (b) R(PAP) is closed.
 - (c) $S + \ker A$ is closed.
- 3. If R(PAP) is closed (or, equivalently, if $R(PA^{1/2})$ or $A^{1/2}(\mathcal{S})$ are closed), then (A,\mathcal{S}) is compatible. Indeed, using the matrix form (4), the positivity of A implies that $R(b) \subseteq R(a^{1/2})$ (see, e.g., [1]). If R(PAP) = R(a) is closed, then $R(b) \subseteq R(a^{1/2}) = R(a)$ so that (A,\mathcal{S}) is compatible, by Corollary 2.2.

3 Splines and A-selfadjoint projections

In this section we characterize the existence of splines in terms of the existence of Aselfadjoint projections. The first result extends a theorem of Izumino [12] to operators
whose ranges are not necessarily closed.

Proposition 3.1 Let $T \in L(\mathcal{H}, \mathcal{H}_1)$, $A = T^*T \in L(\mathcal{H})$ and $S \subseteq \mathcal{H}$ a closed subspace. Then, for any $\xi \in \mathcal{H}$,

$$sp(T, \mathcal{S}, \xi) = (\xi + \mathcal{S}) \cap \mathcal{S}^{\perp_A}.$$

In particular, $sp(T, S, \xi)$ is an affine manifold of $L(\mathcal{H})$ and, if $\eta \in sp(T, S, \xi)$, then $sp(T, S, \xi) = n + \ker T \cap S$.

Proof. Suppose that $\eta \in (\xi + \mathcal{S}) \cap A^{-1}(\mathcal{S}^{\perp})$ and $\sigma \in \mathcal{S}$. Then $\langle A\eta, \sigma \rangle = \langle A\sigma, \eta \rangle = 0$ and

$$||T(\eta + \sigma)||^2 = \langle A(\eta + \sigma), \eta + \sigma \rangle = \langle A\eta, \eta \rangle + \langle A\sigma, \sigma \rangle \ge \langle A\eta, \eta \rangle = ||T\eta||^2.$$

Therefore $\eta \in sp\ (T, \mathcal{S}, \xi)$. Conversely, if $\eta \in sp\ (T, \mathcal{S}, \xi)$ and $\sigma \in \mathcal{S}$, then, for any $t \in \mathbb{R}$,

$$||T\eta||^2 \le ||T(\eta + t\sigma)||^2 = \langle A(\eta + t\sigma), \eta + t\sigma \rangle = \langle A\eta, \eta \rangle + t^2 \langle A\sigma, \sigma \rangle + 2t \operatorname{Re} \langle A\eta, \sigma \rangle$$
$$= ||T\eta||^2 + t^2 \langle A\sigma, \sigma \rangle + 2t \operatorname{Re} \langle A\eta, \sigma \rangle,$$

therefore $t^2\langle A\sigma,\sigma\rangle + 2t$ Re $\langle A\eta,\sigma\rangle \geq 0$ for all $t\in\mathbb{R}$ and a standard argument shows that $\langle A\eta,\sigma\rangle = 0$ and then $\eta\in(\xi+\mathcal{S})\cap A^{-1}(\mathcal{S}^{\perp})$.

Theorem 3.2 Let $T \in L(\mathcal{H}, \mathcal{H}_1)$, $A = T^*T \in L(\mathcal{H})$ and $S \subseteq \mathcal{H}$ a closed subspace.

- 1. If $\xi \in \mathcal{H}$, sp (T, \mathcal{S}, ξ) is not empty $\iff \xi \in \mathcal{S} + A^{-1}(\mathcal{S}^{\perp})$.
- 2. The following conditions are equivalent:
 - (a) $sp(T, S, \xi)$ is not empty for every $\xi \in \mathcal{H}$.
 - (b) $S + A^{-1}(S^{\perp}) = \mathcal{H}$.
 - (c) The pair (A, S) is compatible.
- 3. If (A, S) is compatible and $\xi \in \mathcal{H} \setminus S$, it holds sp $(T, S, \xi) = \{(I Q)\xi : Q \in \mathcal{P}(A, S)\}$.
- 4. If (A, S) is compatible, then for every $\xi \in \mathcal{H}$, $(I P_{A,S})\xi$ is the unique vector in $sp(T, S, \xi)$ with minimal norm.

Proof. The first assertion follows directly from Proposition 3.1. Indeed, if $\eta \in sp(T, \mathcal{S}, \xi)$ and $\eta = \xi + \sigma$ with $\sigma \in \mathcal{S}$, then $\xi = -\sigma + \eta \in \mathcal{S} + A^{-1}(\mathcal{S}^{\perp})$; the converse implication is similar. The second assertion follows from the first one and equation (2). In order to prove the third item, let $\xi \in \mathcal{H}$ and $Q \in \mathcal{P}(A, \mathcal{S})$. Then, by Proposition 3.1 and equation (2),

$$(I-Q)\xi = \xi - Q\xi \in (\xi + \mathcal{S}) \cap \ker Q \subseteq (\xi + \mathcal{S}) \cap A^{-1}(\mathcal{S}^{\perp}) = sp\ (T, \mathcal{S}, \xi).$$

Conversely, let $\eta \in sp(T, \mathcal{S}, \xi)$ and $\sigma \in \mathcal{S}$ such that $\xi = \sigma + \eta$. We are looking for some $Q \in \mathcal{P}(A, \mathcal{S})$ such that $Q\xi = \sigma$. Let $\eta_1 = (I - P_{A,\mathcal{S}})\xi$ and $\sigma_1 = \xi - \eta_1 = P_{A,\mathcal{S}}\xi \in \mathcal{S}$. Then, by Proposition 3.1,

$$\sigma - \sigma_1 = \eta_1 - \eta \in \mathcal{S} \cap A^{-1}(\mathcal{S}^{\perp}) = \ker A \cap \mathcal{S}.$$

If $\xi = \sigma_2 + \rho$ with $\sigma_2 \in \mathcal{S}$ and $0 \neq \rho \in \mathcal{S}^{\perp}$, choose $z \in L(\mathcal{S}^{\perp}, \ker A \cap \mathcal{S}) \subseteq L(\mathcal{H})$ such that $z(\rho) = \sigma - \sigma_1$. By Theorem 2.3, $Q = P_{A,\mathcal{S}} + z \in \mathcal{P}(A,\mathcal{S})$ and clearly $Q\xi = \sigma$.

The minimality of $\|(1-P_{A,\mathcal{S}})\xi\|$ is proved as follows. If $\xi \in \mathcal{S}$ then $(I-P_{A,\mathcal{S}})\xi = 0$, which must be minimal. If $\xi \notin \mathcal{S}$, let $\xi = \sigma_2 + \rho$ with $\sigma_2 \in \mathcal{S}$ and $0 \neq \rho \in \mathcal{S}^{\perp}$. By

Theorem 2.3, any $Q \in \mathcal{P}(A, \mathcal{S})$ has the form $Q = P_{A,\mathcal{S}} + z$, with $z \in L(\mathcal{S}^{\perp}, \ker A \cap \mathcal{S})$ ($\subseteq L(\mathcal{H})$). Recall that $R(P_{A,\mathcal{S}}) = \mathcal{S} \ominus (\ker A \cap \mathcal{S})$. Therefore

$$\|(I-Q)\xi\|^2 = \|(I-Q)\rho\|^2 = \|\rho - P_{A,\mathcal{S}}(\rho) - z(\rho)\|^2 = \|\rho\|^2 + \|P_{A,\mathcal{S}}(\rho)\|^2 + \|z(\rho)\|^2$$

$$\geq \|\rho\|^2 + \|P_{A,\mathcal{S}}(\rho)\|^2 = \|\rho - P_{A,\mathcal{S}}(\rho)\|^2 = \|(I - P_{A,\mathcal{S}})\xi\|^2$$

Corollary 3.3 Let $T \in L(\mathcal{H}, \mathcal{H}_1)$, $A = T^*T \in L(\mathcal{H})$ and $S \subseteq \mathcal{H}$ a closed subspace. Then the following are equivalent:

- 1. $sp(T, S, \xi)$ has an unique element for every $\xi \in \mathcal{H}$.
- 2. The pair (A, S) is compatible and $\ker T \cap S = \{0\}$.

Remark 3.4 Let $T \in L(\mathcal{H}, \mathcal{H}_1)$, $A = T^*T \in L(\mathcal{H})$ and $S \subseteq \mathcal{H}$ a closed subspace.

- 1. If (A, \mathcal{S}) is compatible then, by item 4 of Theorem 3.2, the projection $1 P_{A,\mathcal{S}}$ coincides with the so called *spline projection* for T and \mathcal{S} when T has closed range.
- 2. If R(T) is closed, then, by Remark 2.4 and Theorem 3.2, $sp\ (T, \mathcal{S}, \xi) \neq \emptyset$ for every $\xi \in \mathcal{H}$ if and only if $\ker T + \mathcal{S}$ is closed. In case that $\ker T \cap \mathcal{S} = \{0\}$, then it is equivalent to the condition that the inclination between $\ker T$ and \mathcal{S} is less than one (see [4] and [7]).
- 3. If $\xi \in \mathcal{S}$, then $sp(T, \mathcal{S}, \xi) = \ker T \cap \mathcal{S}$. On the other hand $(I Q)\xi = 0$ for every $Q \in \mathcal{P}(A, \mathcal{S})$. So the equality of item 3 of Theorem 3.2 may be false in this case.

4 Characterizations of the spline projection $P_{A,S}$

Fix $A \in L(\mathcal{H})^+$ and a closed subspace $\mathcal{S} \subseteq \mathcal{H}$. As before, we denote $P = P_{\mathcal{S}}$. In this section two different descriptions of the spline projection $P_{A,\mathcal{S}}$ are given and, as a consequence, we relate $P_{A,\mathcal{S}}$ with the shorted operator (see [1] and Remark 4.4 below).

By Corollary 2.2, it holds that the pair (A, \mathcal{S}) is compatible if and only if $R(PA) \subseteq R(PAP)$. In case that A is invertible, it is known (see [2]) that, in the matrix form (4), a is invertible in $L(\mathcal{S})$ and

$$P_{A,\mathcal{S}} = \begin{pmatrix} a^{-1} & 0 \\ 0 & 0 \end{pmatrix} PA = \begin{pmatrix} 1 & a^{-1}b \\ 0 & 0 \end{pmatrix}, \tag{7}$$

because $a^{-1}b$ is the reduced solution of ax = b (see Theorem 2.3). Rewriting (7), we get $(PAP)P_{A,\mathcal{S}} = PA$. Thus, if A is invertible, $P_{A,\mathcal{S}}$ is the reduced solution of the equation (PAP)X = PA. Let us consider the general case, in other words, if the pair (A,\mathcal{S}) is compatible, let us relate $P_{A,\mathcal{S}}$ with the reduced solution Q of the equation

$$(PAP)X = PA. (8)$$

Observe that, in general, $\overline{R(PAP)}$ is strictly contained in S. Therefore, R(Q) may be smaller that $S = R(P_{AS})$.

Proposition 4.1 If the pair (A, S) is compatible, Q is the reduced solution of the equation (8) and $\mathcal{N} = \ker A \cap S$, Then

$$P_{A,S} = P_{\mathcal{N}} + Q.$$

Moreover, Q verifies the following properties:

- 1. $Q^2 = Q$, $\ker Q = A^{-1}(\mathcal{S}^{\perp})$ and $R(Q) = \mathcal{S} \ominus \mathcal{N}$.
- 2. Q is A-selfadjoint.
- 3. $Q = P_{A,S \cap \mathcal{N}}$.

<u>Proof.</u> Using the matrix form (4) of A, observe that, in L(S), $\ker a = \mathcal{N}$ and $\overline{R(a)} = \overline{R(a^{1/2})} = S \ominus \mathcal{N}$. Note that $R(Q) \subseteq \overline{R(a)}$. Also $\ker Q = \ker(PA) = A^{-1}(S^{\perp})$. If $\xi \in S \ominus \mathcal{N}$, then

$$a(Q\xi) = (PAP)Q\xi = PA\xi = PAP\xi = a(\xi).$$

Since a is injective in $\mathcal{S} \ominus \mathcal{N}$, we can deduce that $Q\xi = \xi$ for all $\xi \in \mathcal{S} \ominus \mathcal{N}$. Now, the compatibility of (A, \mathcal{S}) implies that $\mathcal{S} + A^{-1}(\mathcal{S}^{\perp}) = \mathcal{H}$. Also $A^{-1}(\mathcal{S}^{\perp}) \cap \mathcal{S} = \ker A \cap \mathcal{S} = \mathcal{N}$. Therefore $A^{-1}(\mathcal{S}^{\perp}) \dot{+} (\mathcal{S} \ominus \mathcal{N}) = \mathcal{H}$. Then $Q^2 = Q$ and $R(Q) = \mathcal{S} \ominus \mathcal{N}$. Note that

$$\ker Q = A^{-1}(\mathcal{S}^{\perp}) \subseteq A^{-1}((\mathcal{S} \ominus \mathcal{N})^{\perp}) = R(Q)^{\perp_A},$$

so that Q is A-selfadjoint by equation (2). On the other hand, $(\mathcal{S} \ominus \mathcal{N}) \cap \ker A = \{0\}$, so that Q is the unique element of $P(A, \mathcal{S} \ominus \mathcal{N})$, by Theorem 2.3. Observe that $R(Q) \subseteq \mathcal{N}^{\perp}$ and $\mathcal{N} \subseteq \ker A \subseteq A^{-1}(\mathcal{S}^{\perp}) = \ker Q$. Therefore $(P_{\mathcal{N}} + Q)^2 = P_{\mathcal{N}} + Q$, $R(P_{\mathcal{N}} + Q) = \mathcal{S}$ and $\ker(P_{\mathcal{N}} + Q) = (A^{-1}(\mathcal{S}^{\perp})) \ominus \mathcal{N}$. These formulae clearly imply that $P_{\mathcal{N}} + Q = P_{A,\mathcal{S}}$ (see Theorem 2.3).

Proposition 4.2 If (A, S) is compatible and $\mathcal{M} = \overline{A^{1/2}(S)}$, then $R(P_{\mathcal{M}}A^{1/2}) \subseteq R(A^{1/2}P)$. Moreover, equations (8) and

$$(A^{1/2}P)X = P_{\mathcal{M}}A^{1/2} \tag{9}$$

have the same reduced solution. In particular, if $A^{1/2}(S)$ is closed and $\ker A \cap S = \{0\}$, then

$$P_{A,S} = (A^{1/2}P)^{\dagger} P_{\mathcal{M}} A^{1/2} = (A^{1/2}P)^{\dagger} A^{1/2} = (TP)^{\dagger} T \tag{10}$$

for every $T \in L(\mathcal{H}, \mathcal{H}_1)$ such that $T^*T = A$.

Proof. Denote $B = A^{1/2}$. Recall that $\mathcal{M} = \overline{B(S)} = B^{-1}(S^{\perp})^{\perp}$. Observe that

$$BP_{\mathcal{M}}B = AP_{A,\mathcal{S}} = APP_{A,\mathcal{S}}: \tag{11}$$

in fact, for $\xi \in \mathcal{H}$, let $\eta = P_{A,S}\xi$ and $\rho = \xi - \eta \in A^{-1}(S^{\perp})$; then $B\eta \in \mathcal{M}$ and $B\rho \in B^{-1}(S^{\perp}) = \mathcal{M}^{\perp}$. Hence $BP_{\mathcal{M}}B\xi = A\eta = AP_{A,S}\xi$. By Proposition 4.1, the projection $Q = P_{A,S} - P_{\mathcal{N}}$ is the reduced solution of the equation PAPX = PA. We shall see that Q is the reduced solution of the equation (9). First note that,

by equation (11), $BP_{\mathcal{M}}B = (AP)P_{A,\mathcal{S}} = (AP)Q$, so $B(P_{\mathcal{M}}B - BPQ) = 0$. But $R(P_{\mathcal{M}}B - BPQ) \subseteq \overline{R(B)} = (\ker B)^{\perp}$. Hence Q is a solution of (9). Note that $\ker P_{\mathcal{M}}B = B^{-1}(B^{-1}(\mathcal{S}^{\perp})) = A^{-1}(\mathcal{S}^{\perp}) = \ker Q$ by Prop. 4.1. Finally,

$$\overline{R((BP)^*)} = \overline{R(PB)} = \overline{R(PAP)} = \mathcal{S} \ominus \mathcal{N} = R(Q).$$

The first equality of equation (10) follows directly. The second, from the fact that $(A^{1/2}P)^{\dagger}P_{\mathcal{M}}=(A^{1/2}P)^{\dagger}$. The last equality follows easily using the polar decomposition of T, because $A^{1/2}=|T|$

Formula (10), for operators with closed range, is due to Golomb [10].

Corollary 4.3 Under the notations of Proposition 4.2, the pair (A, S) is compatible if and only if $R(P_M A^{1/2}) \subseteq R(A^{1/2}P)$.

Proof. Suppose that $R(P_{\mathcal{M}}A^{1/2}) \subseteq R(A^{1/2}P)$. Then, given $\xi \in \mathcal{H}$, there must exists $\sigma \in \mathcal{S}$ such that $P_{\mathcal{M}}A^{1/2}\xi = A^{1/2}\sigma$. Therefore $A^{1/2}(\xi - \sigma) = (1 - P_{\mathcal{M}})A^{1/2}\xi$ and

$$||A^{1/2}(\xi - \sigma)|| = ||(1 - P_{\mathcal{M}})A^{1/2}\xi|| = d(A^{1/2}\xi, A^{1/2}(\mathcal{S})) = \inf\{||A^{1/2}(\xi + \tau)|| : \tau \in \mathcal{S}\}.$$
(12)

Hence $\xi - \sigma \in sp$ (T, \mathcal{S}, ξ) and sp $(T, \mathcal{S}, \xi) \neq \emptyset$ for every $\xi \in \mathcal{H}$. This implies compatibility by Theorem 3.2. The converse implication was shown in Proposition 4.2

Remark 4.4 If $A \in L(\mathcal{H})^+$ and $S \in \mathcal{H}$ is a closed subspace, then the set

$$\{X \in L(\mathcal{H})^+ : X \le A \quad \text{and} \quad R(X) \subseteq \mathcal{S}^\perp \}$$

has a maximum (for the natural order relation in $L(\mathcal{H})^+$), which is called the *shorted* operator of A to \mathcal{S}^{\perp} . We denote it by $\Sigma(P,A)$. This notion, due to Krein [13] and Anderson-Trapp [1], has many applications to electrical engineering. It is well known (see Pekarev [15]) that

$$\Sigma(P, A) = A^{1/2} P_{\tau} A^{1/2},$$

where $\mathcal{T} = A^{-1/2}(\mathcal{S}^{\perp}) = A^{1/2}(\mathcal{S})^{\perp}$. From the proof of Proposition 4.2, it follows that, if (A, \mathcal{S}) is compatible, then $A^{1/2}(1 - P_{\mathcal{T}})A^{1/2} = AP_{A,\mathcal{S}}$. Therefore, in this case, $\Sigma(P, A) = A(1 - P_{A,\mathcal{S}})$. More generally, it can be shown that $\Sigma(P, A) = A(1 - Q)$ for every $Q \in \mathcal{P}(A, \mathcal{S})$ (see [6]).

5 Convergence of spline projections

This section is devoted to the study of the convergence of abstract splines in the general (i.e. non necessarily closed range) case. Given $A \in L(\mathcal{H})^+$, let us consider a sequence of closed subspaces \mathcal{S}_n such that all pairs (A, \mathcal{S}_n) are compatible. Following de Boor [4] and Izumino [12], it is natural to look for conditions which are equivalent to the fact that $P_{A,\mathcal{S}_n} \to^{SOT} 0$ (i.e. the spline projections converge to I), where \to^{SOT} means convergence in the strong operator topology. This problem has a well known

solution under the assumption that R(A) is closed (see [4] or [12]). However, in our more general setting, it is possible that the sequence $\{S_n\}$ decreases to $\{0\}$, while $\|P_{A,S_n}\|$ tends to infinity (see section 5.7 below). This induces us to consider the following weaker convergence:

Definition 5.1 Let $A \in L(\mathcal{H})^+$ and $T_n, T \in L(\mathcal{H}), n \in \mathbb{N}$. We shall say that the sequence T_n converges A-SOT to T: $T_n \to^{A-SOT} T$ if

$$\|(T_n - T)\xi\|_A \to 0$$
 for every $\xi \in \mathcal{H}$.

Note that $T_n \to^{A-SOT} T$ if and only if $A^{1/2}T_n \to^{SOT} A^{1/2}T$.

We start with the computation of the norm of $P_{A,S}$ for any compatible pair (A, S). Before that, recall the following formula, due to Ptak [16] (see also [5] and [6]): if Q_1 and Q_2 are orthogonal projections such that $R(Q_1) + R(Q_2) = \mathcal{H}$, then the norm of the unique projection Q_3 with ker $Q_3 = R(Q_1)$ and $R(Q_3) = R(Q_2)$ is

$$||Q_3|| = (1 - ||Q_1Q_2||^2)^{-1/2}. (13)$$

Proposition 5.2 Let $A \in L(\mathcal{H})^+$ such that the pair (A, \mathcal{S}) is compatible. Then

$$||P_{A,S}||^2 = \inf\{\lambda > 0 : PA^2P \le \lambda (PAP)^2\}.$$
 (14)

If, in addition, $\ker A \cap \mathcal{S} = \{0\}$, then

$$||P_{A,S}|| = (1 - ||QP||^2)^{-1/2}, (15)$$

where Q denotes the orthogonal projection onto $A^{-1}(\mathcal{S}^{\perp})$.

Proof. Let Q be the reduced solution of the equation (PAP)X = PA. Then $||Q||^2$ equals the infimum of equation (14) by Douglas Theorem. On the other hand, by Proposition 4.1, $||Q|| = ||P_{A,\mathcal{S}}||$, showing formula (14). If $\ker A \cap \mathcal{S} = \{0\}$, then Theorem 2.3 assures that $R(P_{A,\mathcal{S}}) = \mathcal{S}$ and $\ker P_{A,\mathcal{S}} = A^{-1}(\mathcal{S}^{\perp})$. Therefore (15) follows from Ptak formula (13)

Remark 5.3 Let $A \in L(\mathcal{H})^+$ such that the pair (A, \mathcal{S}) is compatible and $\ker A \cap \mathcal{S} = \{0\}$. Then, if $P_{\ker A}$ is the orthogonal projection onto $\ker A$, then

$$||P_{A,S}|| \ge (1 - ||P_{\ker A}P||^2)^{-1/2}.$$

Indeed, if Q is the projection of equation (15), then $P_{\ker A} \leq Q$, because $\ker A \subseteq A^{-1}(\mathcal{S}^{\perp})$. Then $\|P_{\ker A}P\|^2 = \|PP_{\ker A}P\| \leq \|PQP\| = \|QP\|^2$. This inequality, shown by de Boor in [4] in the closed range case, relates the norm of $P_{A,\mathcal{S}}$ with the angle between $\ker A$ and \mathcal{S} .

Proposition 5.4 Let $A \in L(\mathcal{H})^+$ and let S_n $(n \in \mathbb{N})$ be closed subspaces such that all pairs (A, S_n) are compatible. Denote by $\mathcal{M}_n = \overline{A^{1/2}(S_n)}$, $n \in \mathbb{N}$.

1. The following conditions are equivalent:

- (a) $P_{A,S_n} \to^{A-SOT} 0$.
- (b) $\langle AP_{A,S_n}\xi,\xi\rangle \to 0$, for every $\xi \in \mathcal{H}$ (i.e. $AP_{A,S_n} \to^{WOT} 0$ by polarization).
- (c) $AP_{A,S_n} \to^{SOT} 0$.
- (d) $\Sigma(P_{\mathcal{S}_n}, A) \to^{SOT} A$.
- (e) $P_{\mathcal{M}_n}A^{1/2} \to^{SOT} 0$.
- 2. If there exists $C \ge 0$ such that $||P_{A,S_n}|| \le C$ for all $n \in \mathbb{N}$ and $P_{S_n}A \to^{SOT} 0$, then $P_{A,S_n} \to^{A-SOT} 0$.
- 3. If $P_{A,S_n} \to^{A-SOT} 0$, then $P_{S_n}A \to^{SOT} 0$.

Proof.

- 1. Because $P_{A,S_n}^*A = AP_{A,S_n}$, it is clear that conditions (a), (b) and (c) are equivalent. By Remark 4.4, $\Sigma(P_{S_n}, A) = A(1 P_{A,S_n})$, so that (c) is equivalent to (d). Finally, by Proposition 4.2, we know that $A^{1/2}P_{A,S_n} = P_{\mathcal{M}_n}A^{1/2}$, and this shows that (a) is equivalent to (e).
- 2. Suppose that there exists $C \geq 0$ such that $||P_{A,\mathcal{S}_n}|| \leq C$ for all $n \in \mathbb{N}$ and that $P_{\mathcal{S}_n}A \to^{SOT} 0$. Denote by $P_n = P_{\mathcal{S}_n}$. The fact that $R(P_{A,\mathcal{S}_n}) = R(P_n)$ implies that $P_nP_{A,\mathcal{S}_n} = P_{A,\mathcal{S}_n}$. Therefore, for every $\xi \in \mathcal{H}$,

$$||P_{A,S_n}^*A\xi|| = ||P_{A,S_n}^*P_nA\xi|| \to 0,$$

since $||P_{A,\mathcal{S}_n}||$ is bounded. Hence $P_{A,\mathcal{S}_n}^*A = AP_{A,\mathcal{S}_n} \to^{SOT} 0$ so that $P_{A,\mathcal{S}_n} \to^{A-SOT} 0$, by item 1.

3. Suppose that $P_{A,\mathcal{S}_n} \to^{A-SOT} 0$. Then, by item 1, $AP_{A,\mathcal{S}_n} \to^{SOT} 0$. Note that $P_{A,\mathcal{S}_n}P_n=P_n$, so that $P_nP_{A,\mathcal{S}_n}^*=P_n$. Given $\xi \in \mathcal{H}$, we have that

$$||P_n A \xi|| = ||P_n P_{A, S_n}^* A \xi|| = ||P_n A P_{A, S_n} \xi|| \le ||A P_{A, S_n} \xi|| \to 0$$

Remark 5.5 With the notations of Proposition 5.4, it follows that $P_{A,\mathcal{S}_n} \to^{A-SOT} 0$ if and only if $A^{1/2}(1-P_{A,\mathcal{S}_n})\xi \to A^{1/2}\xi$ for every $\xi \in \mathcal{H}$ or, equivalently, the spline interpolants $\xi_n = (1-P_{A,\mathcal{S}_n})\xi$ satisfy that $T\xi_n \to T\xi$ in \mathcal{H}_1 , if $T \in L(\mathcal{H},\mathcal{H}_1)$ and $T^*T = A$. In particular, if $P_{A,\mathcal{S}_n} \to^{A-SOT} 0$, then $\min\{\|T(\xi+\tau)\| : \tau \in \mathcal{S}_n\} = \|T(1-P_{A,\mathcal{S}_n})\xi\| \to \|T\xi\|$.

Proposition 5.6 Let $A \in L(\mathcal{H})^+$ and $\mathcal{S}_2 \subseteq \mathcal{S}_1 \subseteq \mathcal{H}$ closed subspaces. Suppose that (A, \mathcal{S}_1) is compatible. Denote by $P_i = P_{\mathcal{S}_i}$, i = 1, 2 and $a_1 = P_1AP_1 \in L(\mathcal{S}_1)^+$. Then

 (A, \mathcal{S}_2) is compatible if and only if (a_1, \mathcal{S}_2) is compatible in $L(\mathcal{S}_1)$.

Proof. We know that, if $A = \begin{pmatrix} a_1 & b_1 \\ b_1^* & c_1 \end{pmatrix}$, in the matrix decomposition induced by P_1 ,

then $R(b_1) \subseteq R(a_1)$. Hence also $R(P_2b_1) \subseteq R(P_2a_1)$. If $a_1 = \begin{pmatrix} a_2 & b_2 \\ b_2^* & c_2 \end{pmatrix}$, using now the

matrix decomposition induced by P_2 , then $P_2a_1 = a_2 + b_2$ and $P_2A(1-P_2) = b_2 + P_2b_1$. Hence

$$R(P_2b_1) \subseteq R(P_2a_1) = R(a_2) + R(b_2)$$
 and $R(P_2A(1-P_2)) = R(b_2) + R(P_2b_1)$.

Therefore the pair (A, \mathcal{S}_2) is compatible if and only if $R(P_2A(1-P_2)) \subseteq R(P_2AP_2) = R(a_2)$ if and only if $R(b_2) \subseteq R(a_2)$ if and only if the pair (a_1, \mathcal{S}_2) is compatible

Example 5.7 Let $A \in L(\mathcal{H})^+$ injective but not invertible. With the notations of Proposition 5.6 it is easy to see that $P_1P_{A,\mathcal{S}_2}P_1 = P_{A,\mathcal{S}_2}P_1 \in \mathcal{P}(a_1,\mathcal{S}_2)$. Note that a_1 is injective, so that $\mathcal{P}(a_1,\mathcal{S}_2)$ has a unique element and

$$P_{a_1,S_2} = P_{A,S_2} P_1 \quad \Rightarrow \quad ||P_{A,S_2}|| \ge ||P_{a_1,S_2}||.$$
 (16)

We shall see that there exists a sequence S_n , $n \in \mathbb{N}$, of closed subspaces of \mathcal{H} such that

- 1. the pair (A, \mathcal{S}_n) is compatible for every $n \in \mathbb{N}$,
- 2. $S_{n+1} \subseteq S_n$ for every $n \in \mathbb{N}$,
- 3. $\bigcap_{n>1} S_n = \{0\}$, so that $P_{S_n} \to^{SOT} 0$,
- 4. $||P_{A,S_n}|| \to \infty$.

In order to prove this fact, we need the following Lemma:

Lemma 5.8 Let $B \in L(\mathcal{H})^+$ be injective non invertible. Then, for every $\varepsilon > 0$, there exist a closed subspace $S \subseteq \mathcal{H}$ such that the pair (B, S) is compatible, $P_S B P_S$ is not invertible in L(S) and $||P_{B,S}|| \ge \varepsilon^{-1}$.

Proof. Let $\eta \in \mathcal{H}$ be a unit vector. Denote by $\xi = B\eta$ and consider the subspace $\mathcal{S} = \{\xi\}^{\perp}$ and $P = P_{\mathcal{S}}$. It is clear that $\eta \in B^{-1}(\mathcal{S}^{\perp})$. First note that $\langle \xi, \eta \rangle = \langle B\eta, \eta \rangle > 0$, so that $\eta \notin \mathcal{S}$. Since \mathcal{S} is an hyperplane, this implies that $\mathcal{S} + B^{-1}(\mathcal{S}^{\perp}) = \mathcal{H}$ and the pair (B, \mathcal{S}) is compatible. Also PBP is not invertible, because dim $\mathcal{S}^{\perp} = 1 < \infty$. Note that $B^{-1}(\mathcal{S}^{\perp})$ is the subspace generated by η . Hence, if $Q = P_{B^{-1}(\mathcal{S}^{\perp})}$, it is easy to see that $\|PQ\| = \|P\eta\|$. Then, by equation (15),

$$||P_{B,S}|| = (1 - ||PQ||^2)^{-1/2} = (1 - ||P\eta||^2)^{-1/2} = ||(1 - P)\eta||^{-1}$$

and
$$||(1 - P)\eta|| = |\langle \eta, \frac{\xi}{||\xi||} \rangle| = \frac{\langle \eta, B\eta \rangle}{||B\eta||}.$$

So, it suffices to show that there exists a unit vector η such that $\langle \eta, B\eta \rangle \leq \varepsilon \|B\eta\|$. Consider $\rho \in \mathcal{H} \setminus R(B^{1/2})$ a unit vector. Let ρ_n be a sequence of unit vectors in $R(B^{1/2})$ such that $\rho_n \to \rho$. Let $\mu_n \in \mathcal{H}$ such that $B^{1/2}\mu_n = \rho_n$, $n \in \mathbb{N}$, and denote by $\xi_n = B^{1/2}\rho_n = B\mu_n$, and $\xi = B^{1/2}\rho$. It is easy to see, using that $B(\mu_n) = \xi_n \to \xi \notin R(B)$, that $\|\mu_n\| \to \infty$. Denote by $\eta_n = \mu_n \|\mu_n\|^{-1}$. Then

$$\frac{\langle \eta_n, B\eta_n \rangle}{\|B\eta_n\|} = \frac{\langle \mu_n, B\mu_n \rangle}{\|\mu_n\|^2 \|B\eta_n\|} = \frac{\|B^{1/2}\mu_n\|^2}{\|\mu_n\| \|B\mu_n\|} = \frac{1}{\|\mu_n\| \|\xi_n\|} \to 0,$$

because $\xi_n \to \xi \neq 0$

By an inductive argument, using Lemma 5.8, Proposition 5.6 and equation (16), we can construct a sequence of compatible subspaces S_n , $n \in \mathbb{N}$, such that $S_{n+1} \subseteq S_n$ and $||P_{A,S_n}|| \to \infty$. We can also get that $P_{S_n} \to^{SOT} 0$ by interlacing, before constructing the subspace S_{n+1} , a spectral subspace T_n of $P_{S_n}AP_{S_n}$ (as an operator in $L(S_n)$), in such a way that $P_{T_n}AP_{T_n}$ is not invertible and the projections $P_{T_n} \to^{SOT} 0$ (this can be done recursively by testing the projections P_{T_n} in the first n elements of a countable dense subset of \mathcal{H}), and taking S_{n+1} as a subspace of T_n . Note that the pairs $(P_{S_n}AP_{S_n}, T_n)$ are clearly compatible, so that also the pairs (A, T_n) are compatible by Proposition 5.6.

Remark 5.9 Recall from Remark 4.4 that, if (A, \mathcal{S}) is compatible, then $A(1-P_{A,\mathcal{S}}) = \Sigma(P, A)$. Then

$$0 \le AP_{A,\mathcal{S}} = A - \Sigma(P,A) \le A.$$

This implies that $||AP_{A,\mathcal{S}}|| \leq ||A||$, while $||P_{A,\mathcal{S}}||$ can be arbitrarily large.

6 Some examples

In this section we present several examples opairs (A, \mathcal{S}) which are not compatible and pairs (A, \mathcal{S}) which are compatible and such that the spline projector $P_{A,\mathcal{S}}$ can be explicitly computed. Observe that Example 6.4 can not be studied under the closed range hypothesis, considered by Atteia, de Boor and Izumino.

Example 6.1 Let $A \in L(\mathcal{H})^+$ and

$$M = \begin{pmatrix} A & A^{1/2} \\ A^{1/2} & I \end{pmatrix} = \begin{pmatrix} A^{1/2} & 0 \\ I & 0 \end{pmatrix} \begin{pmatrix} A^{1/2} & I \\ 0 & 0 \end{pmatrix} \in L(\mathcal{H} \oplus \mathcal{H})^+$$

Denote by $S = \mathcal{H} \oplus \{0\}$ and by $N = \begin{pmatrix} A^{1/2} & I \\ 0 & 0 \end{pmatrix}$. Since $M = N^*N$, then $\ker M = \ker N = \{\xi \oplus -A^{1/2}\xi : \xi \in \mathcal{H}\}$ which is the graph of $-A^{1/2}$. Note that $R(N) = (R(A^{1/2}) + R(I)) \oplus \{0\} = S$, so that R(M) is also closed. If A is injective with non closed range, then (M, S) is not compatible (because R(A) is properly included in $R(A^{1/2})$). Observe that this implies that the inclination between S and $\ker M$ is one, cf. [4].

Remark 6.2 Let $P \in \mathcal{P}$, $R(P) = \mathcal{S}$ and $A = \begin{pmatrix} a & b \\ b^* & c \end{pmatrix} \in L(\mathcal{H})^+$. It is well known that the positivity of A implies that $R(b) \subseteq R(a^{1/2})$. Therefore, if $\dim \mathcal{S} < \infty$ then the pair (A, \mathcal{S}) is compatible: in fact in this case R(a) = R(PAP) must be closed, so $R(b) \subseteq R(a^{1/2}) = R(a)$ and Corollary 2.2 can be applied. On the other hand, if $\dim \mathcal{S}^{\perp} < \infty$ and R(A) is closed then, by Remark 2.4, (A, \mathcal{S}) is compatible. However, if R(A) is not closed, then the pair (A, \mathcal{S}) can be non compatible:

Proposition 6.3 Let $P \in \mathcal{P}$, $R(P) = \mathcal{S}$ and $A \in L(\mathcal{H})^+$. Suppose that A is injective non invertible and dim $\mathcal{S}^{\perp} < \infty$. Then (A, \mathcal{S}) is compatible if and only if $\mathcal{S}^{\perp} \subseteq R(A)$.

Proof. By equation (2), (A, \mathcal{S}) is compatible if and only if $A^{-1}(\mathcal{S}^{\perp}) + \mathcal{S} = \mathcal{H}$. Since A is injective, equation (3) says that $A^{-1}(\mathcal{S}^{\perp}) \cap \mathcal{S} = \{0\}$. Now the result becomes clear because dim $A^{-1}(\mathcal{S}^{\perp}) = \dim(\mathcal{S}^{\perp} \cap R(A))$

Example 6.4 Let $T \in L(\mathcal{H}, L^2(\Pi))$ given by $Te_m = \frac{e^{i(m+1)t}}{m}$, where e_m $(m \in \mathbb{N})$ is an orthonormal basis of \mathcal{H} . Then $A = T^*T$ is given by $Ae_m = \frac{e_m}{m^2}$, which is injective non invertible. Let $\xi_1, \ldots, \xi_n \in R(A)$, denote by $\mathcal{S} = \{\xi_1, \ldots, \xi_n\}^{\perp}$ and $P = P_{\mathcal{S}}$. If $\xi_i = (\xi_i^{(1)}, \xi_i^{(2)}, \ldots, \xi_i^{(m)}, \ldots), 1 \leq i \leq n$, denote by

$$\eta_i = (\xi_i^{(1)}, 4\xi_i^{(2)}, \dots, m^2 \xi_i^{(m)}, \dots) \in \mathcal{H}, \quad 1 \le i \le n,$$

and Q the orthogonal projection onto the subspace \mathcal{T} generated by η_1, \ldots, η_n . It is clear that $\mathcal{T} = A^{-1}(\mathcal{S}^{\perp})$. Then (A, \mathcal{S}) is compatible and $P_{A,\mathcal{S}}$ is the projection onto \mathcal{S} with kernel \mathcal{T} . Therefore (cf [16] or [5]) ||PQ|| < 1,

$$P_{A,S} = (1 - QP)^{-1}(1 - Q) = \sum_{k=0}^{\infty} (QP)^k (1 - Q)$$

and $||P_{A,S}|| = ||1 - P_{A,S}|| = (1 - ||PQ||^2)^{-1/2}$.

Remark 6.5 Let $B \in L(\mathcal{H})^+$ be injective non invertible. Let $\xi \in \mathcal{H}$ a unit vector, $\mathcal{S} = \{\xi\}^{\perp}$, $P = P_{\mathcal{S}}$ and $P_{\xi} = 1 - P$. Let $B = \begin{pmatrix} a & b \\ b^* & c \end{pmatrix}$ in terms of P. By Proposition 6.3, (B, \mathcal{S}) is compatible if and only if $\xi \in R(B)$. Note that the sequence ξ_n (in R(B)) of Lemma 5.8 converges to $\xi \notin R(B)$. This is, precisely, the fact which implies that $\|P_{B,\{\xi_n\}^{\perp}}\|$ converges to infinity.

Example 6.6 Fix S a closed subspace of H and consider the set

$$\mathcal{A}_{\mathcal{S}} = \{ A \in L(\mathcal{H})^+ : \text{ the pair } (A, \mathcal{S}) \text{ is compatible } \}$$

and the map $\alpha: \mathcal{A}_{\mathcal{S}} \to \mathcal{Q}$ given by $\alpha(A) = P_{A,\mathcal{S}}$. We shall see that α is not continuous. Indeed, let $A = \begin{pmatrix} a & b \\ b^* & c \end{pmatrix}$, and suppose that R(b) = R(a) is a closed subspace \mathcal{M} properly included in \mathcal{S} . Denote by $\mathcal{N} = \mathcal{S} \ominus \mathcal{M}$ and consider the projection $P_{\mathcal{N}}$ and some element $u \in L(\mathcal{S}^{\perp}, \mathcal{N}) \subseteq L(\mathcal{H}), u \neq 0$. Consider, for every $n \in \mathbb{N}$,

$$= \begin{pmatrix} \frac{1}{n} & 0 & \frac{1}{n} u \\ 0 & a & b \\ \frac{1}{n} u^* & b^* & c + \frac{1}{n} u^* u \end{pmatrix} \ge A \ge 0.$$

It is clear that $A_n \to A$. Note that a is invertible in $L(\mathcal{M})$. Then, by Theorem 2.3,

$$P_{A,\mathcal{S}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & a^{-1}b \\ 0 & 0 & 0 \end{pmatrix} \stackrel{\mathcal{N}}{\mathcal{S}}_{\perp},$$

Also $a + \frac{1}{n}P_{\mathcal{N}}$ is invertible in $L(\mathcal{S})$, for every $n \in \mathbb{N}$. Then

$$P_{A_n,\mathcal{S}} = \begin{pmatrix} n & 0 & 0 \\ 0 & a^{-1} & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{n} & 0 & \frac{1}{n} u \\ 0 & a & b \\ \frac{1}{n} u^* & b^* & c + \frac{1}{n} u^* u \end{pmatrix} = \begin{pmatrix} 1 & 0 & u \\ 0 & 1 & a^{-1}b \\ 0 & 0 & 0 \end{pmatrix} \begin{matrix} \mathcal{N} \\ \mathcal{M} \\ \mathcal{S}^{\perp} \end{matrix}$$

for all $n \in \mathbb{N}$. Therefore $\alpha(A_n) = P_{A_n,S} \not\to P_{A,S} = \alpha(A)$. Note that the sequence $\alpha(A_n)$ converges (actually, it is constant) to $P_{A,S} + u$, which belongs to $\mathcal{P}(A,S)$ by Theorem 2.3.

References

- [1] W. N. Anderson and G. E. Trapp, Shorted operators II, SIAM J. Appl. Math. 28 (1975), 60-71.
- [2] E. Andruchow, G. Corach and D. Stojanoff, Geometry of oblique projections, Studia Math. 137 (1999) 61-79.
- [3] M. Atteia, Generalization de la définition et des propriétés des "splinefonctions", C.R. Acad. Sci. París 260 (1965), 3550-3553.
- [4] C. de Boor, Convergence of abstract splines, J. Approx. Theory 31 (1981), 80-89.
- [5] D. Buckholtz, Hilbert space idempotents and involutions, Proc. Amer. Math. Soc. 128 (2000), 1415-1418.
- [6] G. Corach, A. Maestripieri and D. Stojanoff, Schur complements and oblique projections, Acta Sci. Math. (Szeged), 67 (2001) 337-356.
- [7] F. Deutsch, The angle between subspaces in Hilbert space, in "Approximation theory, wavelets and applications" (S. P. Singh, editor), Kluwer, Netherlands, 1995, 107-130.
- [8] F. J. Delvos, Splines and pseudoinverses, RAIRO Anal. Numér. 12 (1978), 313-324.
- [9] R. G. Douglas, On majorization, factorization and range inclusion of operators in Hilbert space, Proc. Amer. Math. Soc. 17 (1966) 413-416.
- [10] M. Golomb, Splines, n-Widths and optimal approximations, MRC Technical Summary Report 784 (1967).

- [11] S. Hassi, Nordström, K.; On projections in a space with an indefinite metric, Linear Algebra Appl. 208/209 (1994), 401-417.
- [12] S. Izumino, Convergence of generalized splines and spline projectors, J. Approx. Theory 38 (1983), 269-278.
- [13] M. G. Krein, The theory of self-adjoint extensions of semibounded Hermitian operators and its applications, Mat. Sb. (N. S.) 20 (62) (1947), 431-495
- [14] Z. Pasternak-Winiarski, On the dependence of the orthogonal projector on deformations of the scalar product, Studia Math. 128 (1998), 1-17.
- [15] E. L. Pekarev, Shorts of operators and some extremal problems, Acta Sci. Math. (Szeged) 56 (1992), 147-163.
- [16] V. Ptak, Extremal operators and oblique projections, Casopis propertování Matematiky, 110 (1985), 343-350.
- [17] A. Sard, Optimal approximation, J. Funct. Anal. (1967), 222-244.
- [18] B. Shekhtman, Unconditional convergence of abstract splines, J. Approx. Theory, 30 (1980), 237-246.

Gustavo Corach, Instituto Argentino de Matemática, Saavedra 15 Piso 3 (1083), Buenos Aires, Argentina. e-mail: gcorach@dm.uba.ar

Alejandra Maestripieri, Instituto de Ciencias, UNGS, Roca 850 (1663) San Miguel, Argentina. e-mail: amaestri@ungs.edu.ar

Demetrio Stojanoff, Departamento de Matemática, FCE-UNLP, 115 y 50 (1900) La Plata, Argentina. e-mail: demetrio@mate.unlp.edu.ar