Two basic lifting theorems in the continuous case

Fernando Peláez

Abstract

The relation between the lifting theorems due to Nagy-Foias and Cotlar-Sadosky in the continuous case is discussed.

THE NAGY-FOIAS COMMUTANT LIFTING THEOREM

The Nagy-Foias commutant lifting theorem ([N-F.1], [N-F.2]) is an abstract generalization of Sarason's generalized interpolation theorem ([S.1]) and is a basic result in Operator Theory and its applications to interpolation problems. We refer the reader to the fundamental selfcontained book [F-F] in wich is presented a unified geometric aproach, based in this theorem, to a large array of classical and modern interpolation problems arising in mathematics and engineering. To state the theorem in the continuous (monoparametric) version we need to recall a few definitions and basic results.

A strongly continuous semigroup of contractions in the Hilbert space \mathcal{H} is a family $T = \{T(t)/t \geq 0\} \subset \mathcal{L}(\mathcal{H})$ of contractive operators in \mathcal{H} such that T(0) = I (the identity operator in \mathcal{H}), T(t+s) = T(t)T(s), for all $t, s \geq 0$, and $\|T(t)h - h\| \to 0$ if $t \to 0^+$, for each $h \in \mathcal{H}$. A minimal unitary dilation of such a semigroup T is a strongly continuous group $U = \{U(t)/t \in \Re\} \subset \mathcal{L}(\mathcal{F})$ of unitary operators on a Hilbert space \mathcal{F} that contains \mathcal{H} such that $T(t) = P_{\mathcal{H}}^{\mathcal{F}}U(t) \mid_{\mathcal{H}}$ for all $t \geq 0$, and that the minimality condition holds: $\mathcal{F} = \bigvee \{U(t)\mathcal{H}/t \in \Re\}$ (i.e., \mathcal{F} is the closed linear span of $\{U(t)\mathcal{H}/t \in \Re\}$). Every strongly continuous semigroup of contractions has minimal unitary dilations and two minimal unitary dilations are always isomorphic ([N-F.2] I.8.2). If $U = \{U(t)/t \in \Re\} \subset \mathcal{L}(\mathcal{F})$ is the minimal unitary dilation of $T = \{T(t)/t \geq 0\} \subset \mathcal{L}(\mathcal{H})$ then a minimal isometric dilation is associated as follows: if $\mathcal{M} = \bigvee \{U(t)\mathcal{H}/t \geq 0\}$ and $W(t) = U(t) \mid_{\mathcal{M}}$ then

 $W = \{W(t)/t \geq 0\} \subset \mathcal{L}(\mathcal{M})$ is a strongly continuous group of isometries such that $T(t) = P_{\mathcal{H}}^{\mathcal{M}}W(t) \mid_{\mathcal{H}}$ for all $t \geq 0$, $\mathcal{M} = \bigvee \{W(t)\mathcal{H}/t \geq 0\}$ and $T(t)P_{\mathcal{H}}^{\mathcal{M}} = P_{\mathcal{H}}^{\mathcal{M}}T(t)$, for all $t \geq 0$.

THEOREM A For j = 1, 2 let $T_j = \{T_j(t)/t \ge 0\} \subset \mathcal{L}(\mathcal{H}_j)$ be a strongly continuous semigroup of contractions in the Hilbert space \mathcal{H}_j , $U_j = \{U_j(t)/t \in \Re\} \subset \mathcal{L}(\mathcal{F}_j)$ with $\mathcal{F}_j = \bigvee \{U_j(t)\mathcal{H}_j/t \in \Re\}$ its minimal unitary dilation and $W_j = \{W_j(t)/t \ge 0\} \subset \mathcal{L}(\mathcal{M}_j)$ with $\mathcal{M}_j = \bigvee \{U_j(t)\mathcal{H}_j/t \ge 0\}$ its minimal isometric dilation. If $X \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$ is such that $XT_1(t) = T_2(t)X$ holds for all $t \ge 0$ then:

- 1. Exists $Y \in \mathcal{L}(\mathcal{F}_1, \mathcal{F}_2)$ such that $YU_1(t) = U_2(t)Y$, $\forall t \in \Re$, $P_{\mathcal{H}_2}^{\mathcal{F}_2} Y \mid_{\mathcal{H}_1} = X$ and ||Y|| = ||X||.
- 2. Exists $Z \in \mathcal{L}(\mathcal{M}_1, \mathcal{M}_2)$ such that $ZW_1(t) = W_2(t)Z$, $\forall t \geq 0$, $P_{\mathcal{H}_2}^{\mathcal{M}_2}Z = XP_{\mathcal{H}_1}^{\mathcal{M}_1}$ and $\|Z\| = \|X\|$.

The theorem says that every operator X wich interwines the semigroups T_1 and T_2 can be *lifted* to an operator Y (with the same norm as X) wich interwines the minimal unitary dilations of these semigroups. This continuous version of the Nagy-Foias commutant lifting theorem was first proved by Arocena ([A.1]) and it was applied in [F] to the solution of an interpolation problem of Dym and Gohberg [D-G]. Combining Arocena's approach to lifting problems in general groups developed in [A.3] (see also [A.2] and [S.2]) with the theory of extensions of local semigroups of contractions ([B]) a simpler and more conceptual proof was given in [A.3].

A COTLAR-SADOSKY LIFTING THEOREM

Let us consider two arbitrary vector spaces V_1 , V_2 and two arbitrary subspaces $W_1 \subset V_1$, $W_2 \subset V_2$. For j = 1, 2 suppose that $\tau_j(t) : V_j \longrightarrow V_j$ $(t \in \Re)$ is a group of linear isomorphisms such that:

$$\tau_1(t)\mathcal{W}_1 \subset \mathcal{W}_1 \qquad \tau_2(-t)\mathcal{W}_2 \subset \mathcal{W}_2, \qquad \forall t \geq 0.$$

 $\{V_1, V_2, W_1, W_2, \tau_1, \tau_2\}$ is called an algebraic scattering system ([C-S.2]). Let $B_j : V_j \times V_j \to C$ be a sesquilinear form. We recall the following definitions:

- B_j is positive $\iff B_j(v,v) \ge 0, \quad \forall v \in \mathcal{V}_j.$
- B_j is τ_j Toeplitz $\iff B_j(\tau_j(t)v, \tau_j(t)w) = B_j(v, w), \quad \forall (v, w) \in \mathcal{V}_j \times \mathcal{V}_j, \quad \forall t \in \Re.$
- B_i is τ_i continuous $\iff \forall (v, w) \in \mathcal{V}_i \times \mathcal{V}_i$, $B_i(\tau_i(.)v, w)$ is continuous.

Analogously, a form $B': \mathcal{V}_1 \times \mathcal{V}_2 \to C$ is said (τ_1, τ_2) -Toeplitz, (τ_1, τ_2) -continuous respectively if:

- $B'(\tau_1(t)v_1, \tau_2(t)v_2) = B'(v_1, v_2), \quad \forall (v_1, v_2) \in \mathcal{V}_1 \times \mathcal{V}_2, \ \forall t \in \Re$.
- for each $(v_1, v_2) \in \mathcal{V}_1 \times \mathcal{V}_2$, $B'(\tau_1(.)v_1, v_2)$, $B'(v_1, \tau_2(.)v_2)$ are continuous.

We also consider sesquilinear forms $B: \mathcal{W}_1 \times \mathcal{W}_2 \to C$. Such a form is called (τ_1, τ_2) -Hankel if:

$$B(\tau_1(t)w_1, w_2) = B(w_1, \tau_2(-t)w_2), \quad \forall (w_1, w_2) \in \mathcal{W}_1 \times \mathcal{W}_2, \quad \forall t \ge 0.$$

Fix an algebraic scattering system $\{\mathcal{V}_1, \mathcal{V}_2, \mathcal{W}_1, \mathcal{W}_2, \tau_1, \tau_2\}$ and two positive forms $B_1: \mathcal{V}_1 \times \mathcal{V}_1 \to C$, $B_2: \mathcal{V}_2 \times \mathcal{V}_2 \to C$, τ_1 -Toeplitz and τ_2 -Toeplitz respectively. If $B': \mathcal{V}_1 \times \mathcal{V}_2 \longrightarrow C$ and $B: \mathcal{W}_1 \times \mathcal{W}_2 \to C$ are other two sesquilinear forms then we write:

- $B' \leq (B_1, B_2) \iff |B'(v_1, v_2)|^2 \leq B_1(v_1, v_1) B_2(v_2, v_2), \ \forall (v_1, v_2) \in \mathcal{V}_1 \times \mathcal{V}_2.$
- $B \prec (B_1, B_2) \iff |B(w_1, w_2)|^2 \leq B_1(w_1, w_1) B_2(w_2, w_2), \quad \forall (w_1, w_2) \in W_1 \times W_2.$

If B_j is τ_j -Toeplitz and τ_j -continuous for j = 1, 2 and $B' \leq (B_1, B_2)$ then B' is (τ_1, τ_2) -continuous. Indeed, if $(v_1, v_2) \in \mathcal{V}_1 \times \mathcal{V}_2$ then we have:

$$|B'(\tau_1(t)v_1, v_2) - B'(\tau_1(t_0)v_1, v_2)|^2 = |B'((\tau_1(t) - \tau_1(t_0))v_1, v_2)|^2 \le$$

$$B_1\left(\left(\tau_1(t) - \tau_1(t_0)\right)v_1, \left(\left(\tau_1(t) - \tau_1(t_0)\right)v_1\right) \ B_2\left(v_2, v_2\right) =$$

$$[2 B_1(v_1, v_1) - 2 Re B_1(\tau_1(t)v_1, \tau_1(t_0)v_1)] B_2(v_2, v_2) \longrightarrow 0 \text{ if } t \to t_0$$

Similar considerations holds for (τ_1, τ_2) -Hankel forms. With this notation we can formulate the following:

THEOREM B For j=1,2 let V_j be a vector space, W_j a subspace, $\tau_j(t): V_j \to V_j$ a group of linear isomorphisms such that $\tau_1(t)W_1 \subset W_1 \ \forall t \geq 0$,

 $\tau_2(-t)\mathcal{W}_2 \subset \mathcal{W}_2 \ \forall t \geq 0 \ and \ \mathcal{V}_j = Lin\{\tau_j(t)\mathcal{W}_j/t \in \Re\}. \ Let \ B_j: \mathcal{V}_j \times \mathcal{V}_j \to C \ be \ a \ positive form \ \tau_j$ -Toeplitz, τ_j -continuous (j=1,2) and $B: \mathcal{W}_1 \times \mathcal{W}_2 \to C \ a \ (\tau_1, \tau_2)$ -Hankel form. If $B \prec (B_1, B_2)$ then there exists a form $\tilde{B}: \mathcal{V}_1 \times \mathcal{V}_2 \to C$, (τ_1, τ_2) -Toeplitz such that $\tilde{B} \leq (B_1, B_2)$ and $\tilde{B}(w_1, w_2) = B(w_1, w_2)$, $\forall (w_1, w_2) \in \mathcal{W}_1 \times \mathcal{W}_2$

Theorem B is a result concerning Toeplitz extensions of generalized Hankel forms in the continuous case. It was first stated and proved (as a consecuense of the discrete version) in [C-S 2] (Theorem 2 of [C-S 2]) where several applications were also given. We are going to give a direct proof independently of the discrete case and based on the theory of unitary extensions of local semigroups of isometries [B].

Proof of Theorem B: In the vector space $E = W_1 \times W_2$ we set:

$$\langle (w_1, w_2), (w'_1, w'_2) \rangle = B_1(w_1, w'_1) + B_2(w_2, w'_2) + B(w_1, w'_2) + \overline{B(w'_1, w_2)}$$

It follows that $\langle \ , \ \rangle : E \times E \to C$ is a sesquilinear form, wich is positive since $B \prec (B_1, B_2)$. By an standard way (quotient and completion) we obtain a Hilbert space $(\mathcal{H}, \ \langle \ , \ \rangle)$ and a natural operator π from E to a dense subspace of \mathcal{H} . The formulaes $\lambda_1 w_1 = \pi(w_1, 0), \ \lambda_2 w_2 = \pi(0, w_2)$, determines two isometries $\lambda_j \in \mathcal{L}(\mathcal{W}_j, \mathcal{H})$ such that $\mathcal{H} = \lambda_1 \mathcal{W}_1 \bigvee \lambda_2 \mathcal{W}_2$. For each $t \geq 0$ set:

$$\mathcal{D}_t = \lambda_1 \mathcal{W}_1 \bigvee \lambda_2 \tau_2(-t) \mathcal{W}_2$$

If $w_1 \in \mathcal{W}_1$, $w_2 \in \mathcal{W}_2$ and $t \geq 0$ then we have:

$$\|\lambda_1 w_1 + \lambda_2 \tau_2(-t) w_2\|_{\mathcal{H}}^2$$

$$= B_1(w_1, w_1) + B_2(\tau_2(-t)w_2, \tau_2(-t)w_2) + 2ReB(w_1, \tau_2(-t)w_2)$$

$$= B_1 \left(\tau_1(t)w_1, \tau_1(t)w_1 \right) + B_2(w_2, w_2) + 2ReB \left(\tau_1(t)w_1, w_2 \right)$$

$$= \|\lambda_1 \tau_1(t) w_1 + \lambda_2 w_2\|_{\mathcal{H}}^2.$$

This allows us to define an isometric operator V(t) with domain \mathcal{D}_t by:

$$V(t) (\lambda_1 w_1 + \lambda_2 \tau_2(-t)w_2) = \lambda_1 \tau_1(t)w_1 + \lambda_2 w_2$$

Remark that, $\mathcal{D}_0 = \mathcal{H}$, V(0) = I (the identity operator), if $t, s \geq 0$, then $\mathcal{D}_{t+s} \subset \mathcal{D}_s$, $V_s \mathcal{D}_{t+s} \subset \mathcal{D}_t$ and $V_{t+s} = V_t V_s|_{\mathcal{D}_{t+s}}$. Fix $t_0 > 0$ and put $h = \lambda_1 w_1 + \lambda_2 \tau_2(-t_0)w_2$. If $t < t_0$ we have:

$$V(t) (\lambda_1 w_1 + \lambda_2 \tau_2(-t_0)w_2) = \lambda_1 \tau_1(t)w_1 + \lambda_2 \tau_2(t-t_0)w_2$$

and then
$$||V(t)h - h||^2 = B_1[\tau_1(t)w_1 - w_1, \tau_1(t)w_1 - w_1] + B_2[\tau_2(t - t_0)w_2 - \tau_2(-t_0)w_2, \tau_2(t - t_0)w_2 - \tau_2(-t_0)w_2] +$$

+2 $Re\ B[\tau_1(t)w_1 - w_1, \tau_2(t)\tau_2(-t_0)w_2 - \tau_2(-t_0)w_2]$. By the considerations we have done about continuity it follows that $||V(t)h - h|| \to 0$ if $t \to 0^+$. Thus, we can ensure that the family $V = \{(V(t), \mathcal{D}_t)/t \geq 0\} \subset \mathcal{L}(\mathcal{H})$ is a local semigroup of isometries in the sense of [B]. Then (see theorem 1 of [B]), V can be extended to a strongly continuous group of unitary operators in a larger Hilbert space \mathcal{F} . There exist a Hilbert space \mathcal{F} that contains \mathcal{H} as a closed subspace and a strongly continuous group of unitary operators $\{U(t)/t \in \Re\} \subset \mathcal{L}(\mathcal{F})$ such that $V(t) = U(t)|_{\mathcal{D}_t}$, $\forall t \geq 0$. Define a sesquilinear form $B: \mathcal{V}_1 \times \mathcal{V}_2 \longrightarrow C$ by:

$$\tilde{B}\left(\tau_1(-t)w_1, \tau_2(s)w_2\right) = \langle U(-t)\lambda_1w_1, U(s)\lambda_2w_2\rangle$$

It is obvious that \tilde{B} extends B, that \tilde{B} is (τ_1, τ_2) -Toeplitz and for all $w_1 \in \mathcal{W}_1, w_2 \in \mathcal{W}_2, t, s \in \Re$ we have: $\parallel \tilde{B}(\tau_1(-t)w_1, \tau_2(s)w_2) \parallel^2 \leq \parallel U(-t)\lambda_1 w_1 \parallel^2 \parallel U(s)\lambda_2 w_2 \parallel^2 = 0$

 $\|\lambda_1 w_1\|^2 \|\lambda_2 w_2\|^2 = B_1(w_1, w_1) B_2(w_2, w_2)$ and then $\tilde{B} \leq (B_1, B_2)$.

EQUIVALENCE BETWEEN BOTH THEOREMS

We shall now show that theorems A and B are equivalents.

Theorem B implies Theorem A: Assume ||X|| = 1 and, for j = 1, 2 set $\mathcal{V}_j = \mathcal{F}_j$, $\tau_j(t) = U_j(t)$, $\mathcal{W}_1 = \mathcal{M}_1$, $\mathcal{W}_2 = \bigvee \{U_2(t)\mathcal{H}_2/t \leq 0\}$ and B_j the scalar product in \mathcal{F}_j . Let $B: \mathcal{W}_1 \times \mathcal{W}_2 \longrightarrow C$ be given by:

$$B(w_1, w_2) = \langle X P_{\mathcal{H}_1} w_1, w_2 \rangle, \qquad (w_1, w_2) \in \mathcal{W}_1 \times \mathcal{W}_2.$$

For $(w_1, w_2) \in \mathcal{W}_1 \times \mathcal{W}_2$ and for all $t \geq 0$ we have:

 $B\left(U_1(t)w_1, w_2\right) = \langle X P_{\mathcal{H}_1} W_1(t)w_1, w_2 \rangle$

$$= \langle T_2(t)XP_{\mathcal{H}_1}w_1, w_2 \rangle = \langle XP_{\mathcal{H}_1}w_1, U_2(-t)w_2 \rangle = B(w_1, U_2(-t)w_2) \text{ and}$$

$$|B(w_1, w_2)|^2 - |AP_{\mathcal{H}_1}w_2| \leq \langle w_1, w_2 \rangle + B_1(w_1, w_2) + B_2(w_2, w_2) = B_1(w_1, w_2) + B_2(w_2, w_2)$$

 $|B(w_1, w_2)|^2 = |\langle XP_{\mathcal{H}_1}, w_2 \rangle| \le \langle w_1, w_1 \rangle \langle w_2, w_2 \rangle = B_1(w_1, w_1)B_2(w_2, w_2).$

Thus, B is (U_1, U_2) -Hankel and $B \prec (B_1, B_2)$. Theorem B, ensures the existence of an extension $\tilde{B}: \mathcal{F}_1 \times \mathcal{F}_2 \to C$ of B such that \tilde{B} is (U_1, U_2) -toeplitz and $\tilde{B} \leq (B_1, B_2)$. In this case, $\tilde{B} \leq (B_1, B_2)$ is equivalent to say that $\tilde{B}(f_1, f_2) \leq \|f_1\|_{\mathcal{F}_1}^2 \|f_2\|_{\mathcal{F}_2}^2$ holds for all $(f_1, f_2) \in \mathcal{F}_1 \times \mathcal{F}_2$ and then \tilde{B} is a bounded sesquilinear form with $\|\tilde{B}\| \leq 1$. There exists an operator $Y \in \mathcal{L}(\mathcal{F}_1, \mathcal{F}_2)$ with $\|Y\| = \|\tilde{B}\|$ such that:

$$\tilde{B}(f_1, f_2) = \langle Y f_1, f_2 \rangle_{\mathcal{F}_2} \quad \forall (f_1, f_2) \in \mathcal{F}_1 \times \mathcal{F}_2$$

Since \tilde{B} is (U_1,U_2) -Toeplitz we have: $\langle YU_1(t)f_1,f_2\rangle = \tilde{B}(U_1(t)f_1,f_2) = \tilde{B}(f_1,U_2(-t)f_2) = = \langle Yf_1,U_2(-t)f_2\rangle = \langle U_2(t)Yf_1,f_2\rangle$. and then $YU_1(t) = U_2(t)Y, \ \forall t \in \Re$. For $(h_1,h_2) \in \mathcal{H}_1 \times \mathcal{H}_2$ we have $\langle P_{\mathcal{H}_2}^{\mathcal{F}_2}Yh_1,h_2\rangle_{\mathcal{H}_2} = \langle Yh_1,h_2\rangle_{\mathcal{F}_2} = \tilde{B}(h_1,h_2) = B(h_1,h_2) = \langle Xh_1,h_2\rangle_{\mathcal{H}_2}$ and then

$$P_{\mathcal{H}_2}^{\mathcal{F}_2} Y|_{\mathcal{H}_1} = X$$

Since ||X|| = 1 and $||Y|| \le 1$ it follows that ||Y|| = 1 and A1 holds. Using again the fact that \tilde{B} is an extension of B and taking $(w_1, w_2) \in \mathcal{W}_1 \times \mathcal{W}_2$ instead of $(h_1, h_2) \in \mathcal{H}_1 \times \mathcal{H}_2$ we obtain:

$$P_{\mathcal{W}_2}^{\mathcal{F}_2} Y|_{\mathcal{W}_1} = X P_{\mathcal{H}_1}^{\mathcal{W}_1}$$

This equality together with the known relation $\mathcal{F}_2 \ominus \mathcal{M}_2 = \mathcal{W}_2 \ominus \mathcal{H}_2$ implies $Y\mathcal{M}_1 \subset \mathcal{M}_2$. Setting $Z = Y|_{\mathcal{M}_1}$ A2 follows.

Theorem A implies Theorem B: For j = 1, 2 let $(\mathcal{F}_j, \langle, \rangle_j)$ be the Hilbert space generated (after quotient and completion) by the vector space \mathcal{V}_j and the positive form B_j . Let us identify \mathcal{V}_j as a dense subspace of \mathcal{F}_j . For each $t \in \Re$ and for all $v \in \mathcal{H}_j$ we have:

$$\|\tau_j(t)v\|_j^2 = B_j(\tau_j(t)v, \tau_j(t)v) = B_j(v, v) = \|v\|_j^2$$

and then $\tau_j(t)$ can be extended to an unitary operator $U_j(t) \in \mathcal{L}(\mathcal{F}_j)$. It is clear that $U_j = \{U_j(t)/t \in \Re\} \subset \mathcal{L}(\mathcal{F}_j)$ is a unitary group. Let us see the continuous property, for each $v \in \mathcal{V}_j$ we have:

$$\|U_j(t)v-v\|_j^2=2\|v\|^2-2Re\langle U_j(t)v,v\rangle=2\|v\|^2-2ReB_j(\tau_j(t)v,v)\longrightarrow 0\ if\ t\to 0^+$$

It follows that U_j is strongly continous. If \mathcal{M}_j is the closure of \mathcal{W}_j in \mathcal{F}_j then:

$$U_1(t)\mathcal{M}_1 \subset \mathcal{M}_1 \qquad U_2(-t)\mathcal{M}_2 \subset \mathcal{M}_2 \qquad \forall t \geq 0.$$

$$\mathcal{F}_1 = \bigvee \{ U_1(t) \mathcal{M}_1 / t \le 0 \} \qquad \mathcal{F}_2 = \bigvee \{ U_2(t) \mathcal{M}_2 / t \ge 0 \}$$

For each $t \geq 0$ set:

$$T_1(t) = U_1(t)|_{\mathcal{M}_1}, \qquad T_2(t) = P_{\mathcal{M}_2}^{\mathcal{F}_2} U_2(t)|_{\mathcal{M}_2}.$$

Then $T_j = \{T_j(t)/t \geq 0\} \subset \mathcal{L}(\mathcal{M}_j) (j=1,2)$ is a strongly continuous semi-group of contractions. This is obvious for T_1 . For T_2 we only have to show that

 $P_{\mathcal{M}_2}^{\mathcal{F}_2} U_2(t) P_{\mathcal{M}_2}^{\mathcal{F}_2} U_2(s)|_{\mathcal{M}_2} = P_{\mathcal{M}_2}^{\mathcal{F}_2} U_2(t) U_2(s)|_{\mathcal{M}_2}, \ \forall t, s \geq 0 \text{ but this equality holds since } U_2(t)\mathcal{M}_2^{\perp} \subset \mathcal{M}_2^{\perp} \text{ for } t \geq 0.$

The form B verifies $|B(w_1, w_2)|^2 \le ||W_1||_1^2 ||W_2||_2^2$, for all $(w_1, w_2) \in \mathcal{W}_1 \times \mathcal{W}_2$ and then it can be extended to a bounded form $B : \mathcal{M}_1 \times \mathcal{M}_2 \to C$ with $||B|| \le 1$. There exists an operator $X \in \mathcal{L}(\mathcal{M}_1, \mathcal{M}_2)$ such that $\langle X m_1, m_2 \rangle = B(m_1, m_2)$, and ||X|| = ||B||. For $(w_1, w_2) \in \mathcal{W}_1 \times \mathcal{W}_2$ and $t \ge 0$ we have:

$$\langle XT_1(t)w_1, w_2 \rangle_{\mathcal{M}_2} = \langle XU_1(t)w_1, w_2 \rangle = B(U_1(t)w_1, w_2) = B(w_1, U_2(-t)w_2)$$
$$= \langle Xw_1, U_2(-t)w_2 \rangle_{\mathcal{M}_2} = \langle U_2(t)Xw_1, w_2 \rangle_{\mathcal{F}_2} = \langle P_{\mathcal{M}_2}^{\mathcal{F}_2} U_2(t)Xw_1, w_2 \rangle_{\mathcal{M}_2}$$

and then X interwines the semigruoups T_1 and T_2 . By Theorem B, X can be lifted to an operator $Y \in \mathcal{L}(\mathcal{F}_1, \mathcal{F}_2)$ that interwines (U_1, U_2) with ||Y|| = ||X|| = ||B||. Setting $\tilde{B}(f_1, f_2) = \langle Y f_1, f_2 \rangle_{\mathcal{F}_2}$ we obtain a form $\tilde{B}: \mathcal{F}_1 \times \mathcal{F}_2 \longrightarrow C$ wich verifies the desire conditions.

 $=\langle T_2(t)Xw_1,w_2\rangle$

For an enlightening discussion between generalizations of these theorems in the discrete case we refer to [A.4].

REFERENCES

- [A1] R. Arocena, Generalized Toeplitz kernels and dilations of intertwining operators II (the continuous case), Acta Sci. Math. (Szeged), 53 (1989), 123-137.
- [A2] R. Arocena, Unitary extensions of isometries and contractive intertwining dilations, Operator Theory: Adv. and Appl. 41 (1989), 13-23.
- [A3] R. Arocena, On some extensions of the commutant lifting theorem, Publicaciones Matemáticas del Uruguay, 5 (1992), 61-76.
- [A4] R. Arocena, A dialogue between two lifting theorems, To appear.
- [B] R. Bruzual, Local semigroups of contractions and some applications to Fourier representation theorems, Integral Eq. and Operator Th., 10 (1987), 780-801.
- [C-S.1] M. Cotlar and C. Sadosky, On the Helson-Szego theorem and a related class of modified Toeplitz kernels, Proc. Symp. Pure Math. 25.I (1979), 383-407.

- [C-S.2] M. Cotlar and C. Sadosky, A Lifting Theorem for Subordinated Invariant Kernels, J. Functional Analysis, 67 (1986), 345-359.
- [C-S.3] M. Cotlar and C. Sadosky, Prolongements des formes de Hankel généralisées en formes de Toeplitz, C. R. Acad. Sci. Paris, Serie I 305 (1987), 167-170.
 - [DG] H. Dym and I. Gohberg, A new class of contractive interpolants and maximum entropy principles, Operator Theory: Adv. and Appl. 29 (1988), 117-150.
 - [F] C. Foias, On an interpolation problem of Dym and Gohberg, Integral Eq. and Operator Th. 11 (1988), 769-775.
- [F-F] C. Foias and A. E. Frazho, *The Commutant Lifting Approach to Interpolation Problems*, Birkhauser, 1990.
- [N-F.1] B. Sz.-Nagy and C. Foias, Dilatation des commutants d'operateurs, C. R. Acad. Sci. Paris, Serie A 266 (1968), 493-495.
- [N-F.2] B. Sz.-Nagy and C. Foias, Harmonic Analysis of Operators on Hilbert Space, North-Holland, 1970.
 - [S.1] D. Sarason, Generalized interpolation in H^{∞} , Trans. Am. Math. Soc. 127 (1967), 179-203.
 - [S.2] D. Sarason, New Hilbert Spaces from old, in Paul Halmos, Celebrating 50 Years of Mathematics (J. Ewing, F. W. Gehring eds.), Springer-Verlag, 1991.

Fernando Peláez Bruno. Centro de Matemática de la Facultad de Ciencias. Universidad de la República. Montevideo, Uruguay. e-mail address fpelaez@cmat.edu.uy

Received in July 1998.

Instituto Argentino de Matemática Saavedra 15 - 3er. Piso 1083 - Buenos Aires Argentina.